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Abstract

Classical natural deduction systems are related to a similar dual natural deduction system.
We introduce a natural deduction system for an alternative set of connectives consisting of
implication (→) and its dual ( /←). A proof of the soundness and completeness of the alterna-
tive natural deduction system with respect to a natural semantics via an interpretation to usual
classical propositional logic is outlined.
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1 Introduction
Showing the soundness of a natural deduction system is often the easy part of a soundness and
completeness proof, since we can check that deduction rules are valid with respect to some se-
mantic interpretation: if all premises are true, is the conclusion of a rule also true? Showing the
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completeness part is more involved: we need to provide an argument that all true formulas under
a true interpretation are derivable. In this work, we explore an alternative approach to soundness
and completeness proofs.

Instead of directly proving these properties of a natural deduction system, we use a framework
of translating a logical system into another logical system that is already known to be sound and
complete. These translations, called interpretations, have two requirements: (1) an interpretation
must preserve truth, i.e. a formula represented in both systems must have the same truth value;
(2) an interpretation must preserve the provability of formulas in both natural deduction systems,
i.e. for all deductions of one natural deduction system, a deduction must be shown to exist in the
other natural deduction system and vice versa. This framework is largely based on Grabmayer’s
abstract natural deduction systems [Gra05].

The motivation for writing this paper is in trying to prove correctness of Java programs. This
has lead the author to several interesting papers, e.g. [RB12] [Gen33] [D’A99] [Hun33] [Smu95]
[WL11], and an investigation of an alternative natural deduction system began. The paper by
Riedel & Bruck was inspirational with regard to duality and partial valuations of propositional
formulas. The paper of Wu& Li suggested a deep symmetry in natural deduction systems, namely
to employ a dual deduction system for deducing negated formulas. Similar to Wu & Li, the author
has found an interest in category theory [ML78] and with regard to propositional logic, a system
that operates purely on arrows evolved.

The structure of this paper is as follows: in Section 2 basic preliminaries are discussed. In Sec-
tion 3, an exposition of propositional logic is given as usual, but the definitions are accommodating
towards the introduction of the alternative natural deduction system: a semantic interpretation of
formulas; functions that are truth-preserving; (abstract) natural deduction systems; the notion of
derivability, and; functions that are provability-preserving. In Section 4, we explore three systems:
a system that is known to be sound and complete with respect to classical semantics under certain
axiom admissions, namely minimal and intuitionistic propositional logic; an argument for the du-
ality of natural deduction systems and a conjecture connecting duality with classical semantics,
and; the introduction of an alternative natural deduction system.

The reader is advised to skip Sections 2 and 3 on a first read, and to only consult those sections
if no(ta)tions are unclear.

2 Preliminaries
In this section, we discuss the most important basic no(ta)tions. Not all important notions will be
discussed in this section. This work is a study of first-order classical propositional logic without
predicates, functions, quantifiers, first-order variables. It is assumed that the reader is familiar
with this kind of logic. We base our preliminaries on the work of others and use standard notation
for sets, functions and sequences.

The objects we study are symbols or sets of objects or sequences of objects, and are staged
at the object level, as written on paper. Our study of these objects or collections of objects takes
place on the meta level, in the mind of the reader.

Set Theory By ∅ we denote the empty set. By convention, italic uppercase roman letter are
used as variables for sets. Let a set A be given. We only consider countable sets: finite sets
A = {φ1, . . . φn} or countably infinite sets A = {φ1, . . .}, given distinct objects φi indexed by
1 ≤ i (≤ n). By ∣A∣ we denote the cardinality of a set, which is some fixed n for finite sets and
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∞ for infinite sets. A set of cardinality 1 is called a singleton. We will use set comprehension
notation {φ ∣ P (φ)}. By N we denote the countably infinite set of natural numbers {0,1, . . .}.

Let two sets A and B be given. By the power set P(A) ∶= {S ∣ S ⊆ A} we denote the set
of all subsets of A. The Cartesian product A × B ∶= {⟨a, b⟩ ∣ a ∈ A and b ∈ B} has ordered
pairs ⟨a, b⟩ as elements. We also use extended pairs: triples, quadruples, etc., where generally
⟨a1, a2, . . . , an⟩ ∈ A1×A2×⋯×An is known as the n-tuple for some number n > 0. The repeated
product An ∶= {⟨a1, . . . , an⟩ ∣ ai ∈ A for 1 ≤ i ≤ n}, and A0 ∶= ∅, denotes the set of all n-tuples
over the same set A for n ≥ 0.

We use, in their usual meaning: the membership relation ∈, the subset relation ⊆, the proper
subset relation ⊂, the union operation ∪, the intersection operation ∩, and the Kleene star operation
A∗ ∶= A0∪A1∪⋯ for any setA. Operations and relations are not defined as objects, and wemerely
use them for denotation on the meta level.

Functions Let f ∶ D → C be a function. It is defined as a subset of D ×C, that maps d ∈ D to
c ∈ C written as d ↦ c. dom f ∶= D is the domain and codom f ∶= C the co-domain. For every
element d ∈ D at most a single mapping d ↦ c exists, regardless of c ∈ C. If a mapping d ↦ c
exists we say that f is defined for d. By f(d) = cwe denote function application. For two functions
g ∶ B → C and h ∶ A → B, the composition g ○ h ∶ A → C is defined as g ○ h(a) ∶= g(h(a)).
By id we denote the identity function id(x) = x for any x. Function f is total if f is defined for
every d ∈D, f is partial otherwise. The image of f , denoted as f→ ∶ P(D) → P(C), is defined as
the set f→(A) ∶= {f(d) ∣ d ∈ D and d ∈ A}. The pre-image of f , denoted f← ∶ P(C) → P(D),
is defined as the set f←(B) ∶= {c ∣ c ∈ C and f(c) ∈ B}. The inverse of a function, denoted
as f−1 ∶ C → P(D), is the pre-image of a singleton subset of the co-domain of f . We call f a
bijection if every element of codom f−1 is a singleton, and we note the inverse as f−1 ∶ C →D.

3 Propositional Logic
We will look at formulas of first-order propositional logic. Formulas are constructed from con-
nectives and atomic, indivisible propositions. By A = {a1, . . .} we denote the countably infinite
set of atomic propositions1, so-called propositional variables. Definition 3.1 (on the next page) is
defined more abstractly than usual since we will explore different sets of connectives.

Definition 3.1. (Formulas) Let C be a set of connectives with C = Con ∪ Uni ∪ Bin where
Con,Uni,Bin are some disjoint sets of nullary, unary, and binary connectives, respectively. Then,
the setFC of formulas of propositional logic with connectives of fromC is defined as the smallest
set such that: a ∈ FC if a ∈ A,

◻ ∈ FC if ◻ ∈ Con,

(◻φ) ∈ FC if φ ∈ F and ◻ ∈ Uni,

(φ ◻ ψ) ∈ FC if φ,ψ ∈ F and ◻ ∈ Bin.

We assume C is finite. The subscript of FC is dropped if C is clear from context or unnecessary.
Every connective symbol is member of at most one of the sets Con,Uni,Bin.

We use Greek lower-case letters for meta-variables of formulas. Standard connectives have
their usual names: ⊺ for top, � for bottom, ¬ for negation, ∧ for conjunction, ∨ for disjunction and
→ for implication. We also study a non-standard connective /←, which we call not-implied-by.

1Some authors regard ⊺ and � as atomic propositions [VD83]. Here those connectives are constants, just as in [TS00].
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Example 3.2. (Standard connectives) The set of standard connectives is S ∶= {⊺,�,¬,∧,∨,→}
where Con = {⊺,�}, Uni = {¬}, Bin = {∧,∨,→}. Then, the set of standard formulas is FS .
Remark 3.3. (Saving on parentheses) Formally, elements of FC have all their parentheses. We
will save on the number of parentheses throughout this work: (1) we never write the outermost
pair, (2) if we applied more parentheses than necessary around an otherwise valid formula φ, we
silently discard unnecessary parenthesis, e.g. (φ) = φ, and (3) if other parentheses are missing we
apply a usual precedence rule in the order: ¬,∧,∨,→, /←, such that ¬ binds strongly and /← binds
weakly. Every binary connective is considered right-associative, i.e. φ◻ψ◻χ = φ◻(ψ◻χ).
These informal rules are convenient and conventional.

An important relation between two formulas is the sub-formula relation. Given two formulas
φ,ψ ∈ FC . By the sub-formula relation φ ≤ ψ we denote that the formula φ occurs in the construc-
tion of ψ. Every formula is a sub-formula of itself, i.e. φ ≤ φ. The proper sub-formula relation
φ < ψ denotes φ ≤ ψ and φ ≠ ψ. A direct sub-formula is a proper sub-formula that is directly
used in the construction of an outer formula. For example ψ∨(φ→φ) the two direct sub-formulas
are: ψ and φ→ φ. Here φ is not a direct sub-formula of the outer formula. However, φ is a direct
sub-formula of φ→ φ.

3.1 Interpretation
The classical interpretation of a formula is one of denotation—the ideal result of a formula (see
1.2 of [VD83] or 1.4.1 of [HR04]). We assume that atomic propositions have a known denotation,
given by the primitive valuation v ∶ A → B where B = {0,1} is the value set consisting of only
two distinct symbols. We extend primitive valuations to a valuation that is a function of formulas
in the definition below. Our definition also includes the non-standard connective /←, which will be
extensively studied in Sections 4.2 and 4.3.

Definition 3.4. (Valuation) We define the homomorphic valuation J⋅K⋅ ∶ (A → B) → FC → B
with respect to some set C ⊆ {⊺,�,¬,∧,∨,→, /←}, where we extend every primitive valuation v
to a valuation for all formulas J⋅Kv ∶ FC → B, such that for all φ,ψ ∈ FC :

if JφKv =
0
0
1
1

and JψKv =
0
1
0
1

then Jφ→ ψKv ∶=
1
1
0
1

, Jφ /← ψKv ∶=
0
1
0
0

,

if JφKv =
0
0
1
1

and JψKv =
0
1
0
1

then Jφ ∨ ψKv ∶=
0
1
1
1

, Jφ ∧ ψKv ∶=
0
0
0
1

,

if JφKv = 0
1 then J¬φKv ∶= 1

0 ,

J⊺Kv ∶= 1, J�Kv ∶= 0, JaKv ∶= v(a) for a ∈ A.

Valuations can be seen as a method for computing the value of some formula. If we list all
propositional variables occurring in some given formula in a table and, for every row, a unique
primitive valuation v is given to the propositional variables and the column corresponding to
the formula is computed using the definition above, that column contains all values the given
formula can possibly have. Hence, the value of a formula depends only on the primitive valuation.
Colloquially this is called the truth-table method.
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Definition 3.5. (Entailment) Given a finite set of formulas Γ ⊂ F and a formula ψ ∈ F . The
entailment Γ ⊧ ψ holds if and only if for all primitive valuations v, JψKv = 1 if JφKv = 1 for all
φ ∈ Γ.

Remark 3.6. (Single-element notation) Instead of {φ1, . . . , φn} ⊧ ψ we drop the set brackets and
write φ1, . . . , φn ⊧ ψ. In particular, for ∅ ⊧ ψ we write ⊧ ψ.

If two formulas have the same valuation, regardless of primitive valuation, we consider the
formulas equivalent2 as is defined below. An important subset of equivalences are tautologies:
formulas equivalent to ⊺. As expected, equivalence is reflexive, transitive and symmetric.

An equivalence class is a set of formulas for which any two elements are equivalent. Equiva-
lence and entailment are closely related since φ ≡ ψ if and only if φ ⊧ ψ and ψ ⊧ φ.

Definition 3.7. (Equivalence) Two formulas φ,ψ ∈ F are equivalent, φ ≡ ψ, if and only if for
all primitive valuations v we have JφKv = JψKv . φ is a tautology if and only if φ ≡ ⊺. φ is a
contradiction if and only if φ ≡ �.

3.2 Truth-preserving
We are interested in mapping formulas constructed with non-standard connectives (or only with
a subset of standard connectives) to standard formulas and vice versa. A function of formulas
is an interpretation. See the definition below for a particular kind of interpretations: functions
that map formulas to formulas while preserving classical semantics. We will use truth-preserving
interpretations in the soundness and completeness proofs in Section 4.

Definition 3.8. (Truth-preserving interpretation) A function t ∶ FC → FD with respect to sets of
connectives C,D is a truth-preserving interpretation if and only if for every entailment Γ ⊧ ψ it
holds that t(Γ) ⊧ t(ψ).

By the identity interpretation we mean an interpretation function that is recursive in direct
sub-formulas and maps connectives to themselves, i.e. t(◻) = ◻ for ◻ ∈ Con, t(◻φ) = ◻t(φ) for
◻ ∈ Uni and t(φ ◻ ψ) = t(φ) ◻ t(ψ) for ◻ ∈ Bin.

Example 3.9. There is an interpretation called material implication that is an identity interpre-
tation except for the implication connective where t(φ→ ψ) = ¬t(φ) ∨ t(ψ). Similarly, another
interpretation is called intuitive negation and is an identity interpretation except for the negation
connective where t(¬φ) = t(φ)→ �. We can check that these interpretations are truth-preserving
by the truth-table method, see Figure 2.

3.3 Natural Deduction
A precise description of natural deduction systems in the form of trees is given similar to [TS00].
For a more basic introduction, see [HR04] pp. 5–29. We assume the reader is familiar with proof
trees and their terminology. In this section we define a natural deduction systemNcwith respect to
formulas in FS , viz. standard natural deduction. In later sections we also define natural deduction
systems for formulas constructed from other sets of connectives. We introduce the notion of natural

2Some authors[HR04] define equivalence in terms of entailment, i.e. φ ≡ ψ if and only if φ ⊧ ψ and ψ ⊧ φ. Another
author[VD83] defines equivalence as a connective↔.

5



deduction systems abstractly, that is useful for defining non-standard natural deduction systems.
For a formal account of abstract natural deduction systems see Appendix B.2 of [Gra05].

A natural deduction system with respect to a set of formulas FC consists of rules and axioms,
where axioms are special rules with no premises. An instantiation of a rule has for each formula
meta-variable an actual substituted element of FC ; an abstract rule is represented by the set of all
instantiations of the rule. A rule application (either abstract or instantiated) is a rule where for each
deduction meta-variable and marker meta-variable an actual element is substituted. Conclusions
of rules may only use connectives in the set C. Applications of instantiated rules are deductions.
See Figure 1 for an abstract deduction.

Deductions are represented by proof trees constructed from leafs and nodes where nodes are
labeled by some rule. Assumptions are formulas in FC and can occur only at the leafs of a proof
tree. The number of branches of a node is equal to the number of premises of a rule. We assume
a countably infinite set of markers, for which we use the letters u,w and use natural numbers as
instantiations. Assumptions may bemarked, e.g. φu, which are used by rules to close assumptions.

Rules are displayed graphically, either instantiated in a deduction or as a prescription of rules
of a deduction system. Rules consists zero or a finite number of premises, which are deductions
themselves, and each having a formula as conclusion and a finite number of marked formula oc-
currences, represented by the leafs of a proof tree. Let us consider a meta-notation for ruleR:

[ψ1]u1

D1

φ1 ⋯

[ψn]un

Dn
φn

ψ
R, u1, . . . , un

The notation of the premises has the following meaning, for all i: deduction Di has φi as
conclusion (note that φi is part of Di). Deduction Di has a set [ψi]ui consisting of formula
occurrences of ψi that are marked by ui. The markers written after the name of the rule denote
that the formula occurrences with the same marker are closed by the application of this rule. We
drop the set [ψi]ui and marker ui if the rule does not close open assumptions for that premise, i.e.
we let [ψi]ui ∶= ∅ if the i-th premise does not close assumptions.

What systems are natural deduction systems is subject of debate, see [Pel99] for a history. We
will call something a natural deduction system if it is traditionally called so. Otherwise, we have
that a natural deduction system has at least one rule which closes at least one assumption.

We say “a proof tree is constructed inductively,” to mean that it is defined similar to Definition
3.10 with respect to induction and for brevity will we only show the rules. We denote D(+R) for
a new natural deduction system in whichR is added to an existing natural deduction systemD as
a new rule, and similarly D(−R) for a natural deduction system in whichR is subtracted.
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φ ∨ ¬φ LEM
φ1

(φ→ ψ) → φ0

φ3 ¬φ2

�
¬e

ψ
�e

φ→ ψ
→i,3

φ
→e

φ
∨e,1,2

((φ→ ψ) → φ) → φ
→i,0

Figure 1: An abstract proof tree of Peirce’s Law without open assumptions, for any φ,ψ ∈ FS that
has the conclusion ((φ→ ψ) → φ) → φ.

Definition 3.10. A proof tree of a natural deduction systemNc with respect to FS is constructed
inductively: (1) a single formula occurrence φ ∈ FS with a marker is a single-node proof tree that
represents the deduction with conclusion φ and a set of open assumptions containing only φ; (2)
as shown by the rules below, given that D,D′,D′′ are proof trees of Nc, two markers u,w, and
φ,ψ,χ ∈ FS .

D
φ
D′
ψ

φ ∧ ψ
∧i

D
φ ∧ ψ
φ

∧e1
D

φ ∧ ψ
ψ

∧e2
D
φ

φ ∨ ψ
∨i1

D
ψ

φ ∨ ψ
∨i2

D
φ ∨ ψ

[φ]u
D′
χ

[ψ]w
D′′
χ

χ
∨e, u,w

[φ]u
D
ψ

φ→ ψ
→i, u

D
φ→ ψ

D′
φ

ψ
→e

D
�
φ
�e
D
φ
D′
¬φ
�

¬e

[φ]u
D
�
¬φ

¬i, u
φ ∨ ¬φ LEM ⊺

⊺i

Example 3.11. Continuing with Example 3.9, we may leave out the rules ¬i and ¬e if we interpret
negation as an intuitive negation: then the rule of¬i becomes an instance of→i and¬e and instance
of →e. Indeed, this results in the systemNc(−¬i¬e).

3.4 Derivability
Remark that deductions may still have open assumptions: a proof tree with on its leafs formula
occurrences that are not closed by any rule in the construction. For example in Figure 1 the upper
right proof tree with conclusion φ → ψ still has ¬φ2 as marked formula occurrence that is not
closed by any rule.

Definition 3.12. The set open of marked formula occurrences is defined for all proof trees as:

open(φu) ∶= {φu},

open

⎛
⎜⎜⎜
⎝

[ψ1]u1

D1

φ1 ⋯

[ψn]un

Dn
φn

ψ
R, u1, . . . , un

⎞
⎟⎟⎟
⎠
∶=

n

⋃
i=1

open(Di)/[ψi]ui .
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JφKv JψKv Jφ→ ψKv J¬φ ∨ ψKv J¬φKv Jφ→�Kv
0 0 1 1 1 1
0 1 1 1 1 1
1 0 0 0 0 0
1 1 1 1 0 0

Figure 2: Truth-table method for checking equivalence of two truth-preserving interpretations:
material implication and intuitive negation, respectively.

Marked formula occurrences still have the mark attached to the formula, hence two formulas that
are the same with different marks are different elements in the image of open. We also have the
set of open assumptions with respect to a proof tree D, viz. openset(D) = {φ ∣ φu ∈ open(D)},
which discards all marks of formula occurrences.

Example 3.13. Consider the proof tree (left) and its open marked formula occurrences (right).

ψ1

φ2 φ3

φ ∧ φ
∧i

ψ ∧ φ ∧ φ
∧i

ψ→ ψ ∧ φ ∧ φ
→i,1

{ψ1}
{φ2} {φ3}
{φ2, φ3}

{ψ1, φ2, φ3}
{φ2, φ3}

It has {φ2, φ3} as open marked formula occurrences and has {φ} as set of open assumptions.

Definition 3.14. (Derivability) For any deduction system D, a formula ψ ∈ F is derivable with
respect to a finite set of formulas Γ ⊂ F , denoted by Γ ∣

D
ψ if and only if a deduction D of system

D exists with conclusion ψ and a set of open assumptions Γ = openset(D).

Remark 3.15. (Single-element notation) Similar to Remark 3.6, instead of {φ1, . . . , φn} ⊢ ψ we
drop the set brackets and write φ1, . . . , φn ⊢ ψ. In particular ∅ ⊢ ψ is written as ⊢ ψ.

Definition 3.16. (Soundness and completeness) A deduction system D is sound with respect to
entailment if and only if derivability implies entailment, i.e. Γ ⊧ ψ⇒ Γ ⊢ ψ. Similarly, deduction
systemD is complete with respect to entailment if and only if entailment implies derivability, i.e.
Γ ⊢ ψ⇒ Γ ⊧ ψ.

Finally, we assume that the reader is familiar with the following theorem.

Theorem 3.17. Nc is sound and complete with respect to ⊧, i.e. for all Γ ⊂ FS and ψ ∈ FS it
holds that Γ ∣

Nc
ψ if and only if Γ ⊧ ψ.

3.5 Provability-preserving
Similar to Section 3.2, we are interested in mapping formulas constructed with non-standard con-
nectives (or only with a subset of standard connectives) to standard formulas and vice versa. A
function of formulas is an interpretation. See the definition below for a particular kind of inter-
pretations: functions that map formulas to formulas while preserving provability. We will use
provability-preserving interpretations in the soundness and completeness proofs in Section 4.
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Definition 3.18. (Provability-preserving interpretation) Given two natural deduction systems C
with respect toFC andDwith respect toFD. A function t ∶ FC → FD is a provability-preserving
interpretation if and only if a derivation of C implies a derivation of D for which the function t
is applied to every open assumption and the conclusion, i.e. Γ ∣

C
ψ implies t(Γ) ∣

D
t(ψ).

Example 3.19. Continuing with Example 3.11, we can see that intuitive negation of Example 3.9
is also a provability-preserving interpretation, shown by the derivations below. Since the interpre-
tation is both truth-preserving and provability-preserving, we can extend the soundness property
ofNc to Nc(−¬i¬e). We explore this idea in the next section!

D
φ
D′
¬φ
�

¬e ⇒
D

φ→�
D′
φ

�
→e

[φ]u
D
�
¬φ

¬i, u ⇒

[φ]u
D
�

φ→�
→i, u

Example 3.20. Post has shown that for F{¬,∨} a sound and complete deduction system exists
[Pos21]. In his system, φ∧ψ is defined as ¬(¬φ∨¬ψ), and φ→ψ is defined as ¬φ∨ψ. However,
his system could not be considered a natural deduction system, since it had no closing of open
assumptions.

4 Alternative Natural Deduction
In this sectionwe explore the interpretation of rules of one natural deduction systems as derivations
of another natural deduction system. We work towards the soundness and completeness with
respect to entailment by showing a mechanical transformation of proof trees. We first introduce
the notion of similarity,C ≃D as an equivalence relation between two natural deduction systems
from which we can prove the soundness and completeness of one by the other and vice versa. We
also introduce the more strict notion of natural deduction system equivalence,C ∼D, as a subset
of the similarity relation C ≃D. Then, in the following three subsections we show:

1. minimal formulas FM , the minimization interpretation ⋅†, two natural deduction systems
Ni and Nm and two axioms PL and DN, and Nc ≃Ni(+WPL) ∼Nm(+DN);

2. extended formulas FE , the dual interpretation ⋅d, a dual natural deduction systemNcd, the
similarity Nc ≃Ncd and a conjecture with respect to classical semantics;

3. arrow formulasFA consisting of only the connectives→, /←, an alternative natural deduction
system Na, and Na ≃ Nm(+DN) and, therefore, the soundness and completeness of Na

with respect to classical semantics by Na ≃Nm(+DN) ∼Ni(+WPL) ≃Nc.

We recall that truth-preserving interpretations are functions t ∶ FC → FD for which Γ ⊧ ψ implies
t(Γ) ⊧ t(ψ), see Definition 3.8. We also recall that provability-preserving interpretations, with
respect to two natural deduction systems C on FC and D on FD, are functions t ∶ FC → FD for
which Γ ∣

C
ψ implies t(Γ) ∣

D
t(ψ), see Definition 3.18.

Similarity and equivalence of natural deduction systems are with respect to, in the general case,
two interpretations t1 and t2. Interpretations are used in similarity as mapping formulas between
two natural deduction systems, as defined below.
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Definition 4.1. (Similarity) Let two natural deduction systems C, with respect to FC , and D,
with respect to FD, be given. C and D are similar, C ≃ D, with respect to two interpretations
s ∶ FC → FD and t ∶ FD → FC if and only if for all Γ ⊆ FC and ψ ∈ FC the derivation Γ ∣

C
ψ

implies s(Γ) ∣
D
s(ψ) and for all Γ ⊆ FD and ψ ∈ FD the derivation Γ ∣

D
ψ implies t(Γ) ∣

C
t(ψ).

We define equivalence as strict similarity, in which only one interpretation is given that is a
bijection, and the other is the inverse, i.e. t = s−1. A typical bijection is the identity function
id = id−1.

We also outline the notions of rule admissibility3 and rule derivability. These notions are
useful, as we make extensive use of rule derivability in the following subsections. We say that
a rule R is admissible in some natural deduction system D if and only if D is equivalent with
respect to id toD(+R). In contrast, a ruleR is derivable inD if and only if there exists an abstract
proof tree in D with as open assumptions the premises of R and as conclusion the conclusion of
R, and also mimics the closing of assumptions of R. Indeed, whenever a rule R is derivable in
D, it also means thatR is admissible inD, but the converse need not hold, see Lemma B.2.24 in
[Gra05].

Finally, we also consider the interpretation of rules of a natural deduction system. Given some
interpretation t and natural deduction system D, the natural deduction system Dt has and only
has, for every rule of D, a rule where t is applied to the formulas of premises and assumptions
and the conclusion.

4.1 Minimal
In this section we consider formulasFM constructed by the set of connectivesM = {→,�}, which
we call minimal formulas. We define two interpretations, and show they are truth-preserving, since
Definition 3.4 also applies forFM . We define two natural deduction systems Nm andNi together
with two axioms DN and WPL. We finally show the equivalence Ni(+WPL) ∼ Nm(+DN) and
that the interpretations are provability-preserving to show the similarity Nc ≃Ni(+WPL).

Interpretations One the two interpretations is given in the definition below. For an intuitive
explanation of this interpretation, refer to Section 4.3. Since minimal formulas are a subset of
standard formulas, we let the other interpretation be id.

Definition 4.2. For any formula φ we inductively construct a formula φ† by ⋅† ∶ FC → FM , with
respect to some C ⊆ {⊺,�,¬,∧,∨,→, /←}:

a† ∶= a for all a ∈ A, (¬φ)† ∶= φ† → � for all φ ∈ FC ,
⊺† ∶= � → �, (φ ∧ ψ)† ∶= (ψ†→ (ψ†→ φ†) → �)→ � for all φ,ψ ∈ FC ,
�† ∶= �, (φ ∨ ψ)† ∶= (φ†→ ψ†) → ψ† for all φ,ψ ∈ FC ,

(φ→ ψ)† ∶= φ†→ ψ† for all φ,ψ ∈ FC ,
(φ /← ψ)† ∶= (ψ†→ φ†) → � for all φ,ψ ∈ FC .

The interpretation of ¬φ∨φ ∈ FS is interesting because it is interpreted as ((φ→�)→φ)→φ ∈
FM , called Weak Peirce’s Law in [AH03], an instance of Peirce’s Law if ψ = �.

3We assume rule admissibility here is admissibility with respect to the consequence relation in terms of Grabmayer’s
thesis.
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Proposition 4.3. Given φ ∈ FS , it holds that JφKv = Jφ†Kv for all primitive valuations v.

Proof. Checked by the truth-table method. We show by induction that the interpretation is truth-
preserving: the base-cases are trivial and induction hypothesis is JφKv = Jφ†Kv and JψKv = Jψ†Kv .

JφKv JψKv J¬φKv Jφ†→�Kv Jφ ∨ ψKv J(φ†→ ψ†) → ψ†K etc.
0 0 1 1 0 0
0 1 1 1 1 1
1 0 0 0 1 1
1 1 0 0 1 1

Natural Deduction Systems Below, we define two natural deduction systems, Nm and Ni, for
minimal logic and intuitionistic logic, respectively. These are not equivalent since the rule �e of
Ni is not derivable in Nm.

Definition 4.4. A proof tree ofNm with respect to FM is constructed inductively with the rules:

[φ]u
D
ψ

φ→ ψ
→i, u

D
φ→ ψ

D′
φ

ψ
→e

Remark 4.5. Nm is actually defined with respect to FM/{�}. But, as we will see, we need � for
the axiom DN.

Definition 4.6. A proof tree of Ni with respect to FM is constructed inductively with the rules:

[φ]u
D
ψ

φ→ ψ
→i, u

D
φ→ ψ

D′
φ

ψ
→e

D
�
φ
�e

Definition 4.7. We define the following axioms:

((φ→�)→ �)→ φ
DN ((φ→�)→ φ) → φ

WPL

Remark 4.8. InNm it does not hold that Peirce’s Law is derivable from WPL [AH03], but inNi
it does hold, i.e. Ni(+WPL) ∼ Ni(+PL) for some axiom PL with as conclusion Peirce’s Law. We
leave this as an exercise for the reader.

Equivalence We show that the equivalence Ni(+WPL) ∼ Nm(+DN) holds. In all following
proofs we assume that there is an unlimited supply of unused distinct markers u1, u2, . . ..

Lemma 4.9. Nm(+DN) ∼Ni(+WPL)

Proof. We show that id is a provability-preserving interpretation from Nm(+DN) to Ni(+WPL)

and vice versa. (⇒) Given a derivation Γ ⊢ ψ of Nm(+DN), we show a derivation Γ ⊢ ψ of
Ni(+WPL), by showing that all rules of the former are derivable in the latter.
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Rules →i and →e are trivial. The axiom DN ofNm(+DN) is derivable in Ni(+WPL):

((φ→�)→ φ) → φ
WPL

(φ→�)→ �u1 φ→�u2

�
→e

φ
�e

(φ→�)→ φ
→i, u2

φ
→e

((φ→�)→ �)→ φ
→i, u1

We verify that the deduction has no open assumptions.
(⇐) Given a derivation Γ ⊢ ψ of Ni(+WPL), we show a derivation Γ ⊢ ψ of Nm(+DN), by

showing that all rules of the former are derivable in the latter.
Rules →i and →e are again trivial. The rule �eof Ni(+WPL) is derivable in Nm(+DN):

((φ→�)→ �)→ φ
DN

�u1

(φ→�)→ �
→i

φ
→e

The deduction has one open assumption: �. Note that the marker of the upper right→i is not used,
since we do not close any assumptions there.

The axiom WPL ofNi(+WPL) is derivable inNm(+DN). We abbreviate the formula WPL ∶=
((φ→�)→ φ) → φ in the following:

((WPL→�)→ �)→WPL
DN

WPL→�u1

(φ→�)→ φu2

WPL→�u1

φu3

WPL
→i, u4

�
→e

φ→�
→i, u3

φ
→e

WPL
→i, u2

�
→e

(WPL→�)→ �
→i, u1

((φ→�)→ φ) → φ
→e

We verify that the deduction has no open assumptions.

Similarity We finally show thatNi(+WPL) is similar toNc. We show that the interpretations ⋅†
and id are provability-preserving. We show that the rules of Nc† are derivable in Ni(+WPL) and
we show that the rules of Ni(+WPL) are derivable in Nc.

Lemma 4.10. Nc ≃Ni(+WPL)

Proof. (⇒) We show that ⋅† is a provability-preserving interpretation from Nc to Ni(+WPL).
Given a derivation Γ ⊢ ψ of Nc, we show a derivation Γ† ⊢ ψ† of Ni(+WPL), by showing that
all rules of the former are derivable in the latter, i.e. we show only one case of the similarity
Nc† ∼ Ni(+WPL), where, given a derivation Γ ⊢ ψ of Nc†, we show a derivation Γ ⊢ ψ of
Ni(+WPL).
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For the rule ∧i ofNc, the interpretation ∧†
i ofNc† with conclusion (ψ†→(ψ†→φ†)→�)→�

and assumptions φ† and ψ† is derivable in Ni(+WPL).

ψ†→ (ψ†→ φ†) → �u1 (ψ†)u2

(ψ†→ φ†) → �
→e

(φ†)u3

ψ†→ φ†
→i

�
→e

(ψ†→ (ψ†→ φ†) → �)→ �
→i, u1

The deduction has two open assumptions: φ† and ψ†. Again, the marker of the upper right →i is
not used. From now on, we no longer note when a marker is left unused.

For the rule ∧e1 of Nc, the interpretation ∧†
e1 of Nc† with conclusion φ† and assumption

(ψ†→ (ψ†→ φ†) → �)→ � is derivable in Ni(+WPL).

((φ†→�)→ φ†) → φ† WPL

((φ ∧ ψ)†)u4

φ†→�u1

(ψ†→ φ†)u3 (ψ†)u2

φ†
→e

�
→e

(ψ†→ φ†) → �
→i, u3

ψ†→ (ψ†→ φ†) → �
→i, u2

�
→e

φ†
�e

(φ†→�)→ φ†
→i, u1

φ†
→e

The deduction has one open assumption: (ψ†→ (ψ†→ φ†) → �)→ �.
For the rule ∧e2 of Nc, the interpretation ∧†

e2 of Nc† with conclusion ψ† and assumption
(ψ†→ (ψ†→ φ†) → �)→ � is derivable in Ni(+WPL).

((ψ†→�)→ ψ†) → ψ† WPL

((φ ∧ ψ)†)u3

(ψ†)u2 ψ†→�u1

�
→e

(ψ†→ φ†) → �
→i

ψ†→ (ψ†→ φ†) → �
→i, u2

�
→e

ψ†
�e

(ψ†→�)→ ψ†
→i, u1

ψ†
→e

The deduction has one open assumption: (ψ†→ (ψ†→ φ†) → �)→ �.
For the rule ∨i1 of Nc, the interpretation ∨†

i1
of Nc† with conclusion (φ† → ψ†) → ψ† and

assumption φ† is derivable in Ni(+WPL) (below, left). For the rule ∨i2 of Nc, the interpretation
∨†
i2
with conclusion (φ†→ψ†)→ψ† and assumption ψ† is derivable inNi(+WPL) (below, right).
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(φ†→ ψ†)u1 (φ†)u2

ψ†
→e

(φ†→ ψ†) → ψ†
→i, u1

(ψ†)u1

(φ†→ ψ†) → ψ†
→i

The deductions have as open assumptions: φ† (left) and ψ† (right).
For the rule ∨e of Nc, the interpretation ∨†

e of Nc† with conclusion χ† and assumptions
(φ†→ψ†)→ψ† and φ†→χ† and ψ†→χ†. We show derivability of this rule inNi(+WPL) in two
intermediate steps:

• D(1) is a deduction with conclusion φ†→� and open assumption χ†→�:

χ†→�u1

[φ†]u
D′
χ†

φ†→ χ†
→i, u

(φ†)u2

χ
→e

�
→e

φ†→�
→i, u2

• D(2) is a deduction with conclusion ψ†→� and open assumptions χ†→�:

χ†→�u1

[ψ†]u
D′′
χ†

ψ†→ χ†
→i, u

(ψ†)u3

χ
→e

�
→e

ψ†→�
→i, u3

Combined these two deductions make a larger deduction:

((χ†→�)→ χ†) → χ† WPL

D(2)
ψ†→�

((φ†→ ψ†) → ψ†)u5

D(1)
φ†→� (φ†)u4

�
→e

ψ†
�e

φ†→ ψ†
→i, u4

ψ
→e

�
→e

χ†
�e

(χ†→�)→ χ†
→i, u1

χ†
→e

The deduction has three open assumptions: (φ†→ ψ†) → ψ† and φ†→ χ† and ψ†→ χ†.
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Rules→i,→e, �e are trivial. Rules ¬e and ¬i are shown in Example 3.19. We finally show the
derivation of the two axioms of Nc† in Ni(+WPL).

φ†→ φ†→�u1 (φ†)u2

φ†→�
→e

(φ†)u2

�
→e

φ†→�
→i, u2

(φ†→ φ†→�)→ φ†→�
→i, u1 �u1

�→ �
→i, u1

These deductions have no open assumptions.
(⇐) Given a derivation Γ ⊢ ψ of Ni(+WPL), we show a derivation Γ ⊢ ψ of Nc, by showing

that all rules of the former are derivable in the latter. Rules →i, →e and �e are trivial. The axiom
WPL ofNi(+WPL) is derivable in Nc:

φ ∨ ¬φ LEM
φu2

(φ→�)→ φu1

φu4 ¬φu3

�
¬e

φ→�
→i, u4

φ
→e

φ
∨e, u2, u3

((φ→�)→ φ) → φ
→i, u1

The deduction has no open assumptions.

Since we have obtained the equivalence Ni(+WPL) ∼ Nm(+DN) previously, the similarity
result also applies to Nm(+DN), i.e. Nc ≃ Nm(+DN), since interpretations can be composed as
functions.

4.2 Duality

In this section we consider a super set of standard formulas, the extended formulas FE , for which
we let the set of connectivesE = {⊺,�,¬,∧,∨,→, /←}. We first look at a dual interpretation. Then
we follow with a dual natural deduction system. The dual interpretation is not truth-preserving,
however the dual natural deduction system is still similar to a standard natural deduction system.
We conjecture that there is a relationship between dual natural deduction systems and classical
interpretation.

Interpretation An interpretation of a formula is its dual formula. We define it below as usual;
except usually implication has no dual. For this purpose we introduce a connective /← , which we
call not-implied-by.

The interpretation ⋅d is not truth-preserving, since for example J⊺Kv ≠ J⊺dKv for all primitive
valuations v. However, this interpretation is an involution, i.e. (φd)d = φ for every φ ∈ FE .
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Definition 4.11. For any formula φ we inductively construct a formula φd by ⋅d ∶ FC → FE , with
respect to some C ⊆ {⊺,�,¬,∧,∨,→, /←}:

ad ∶= a for all a ∈ A, ⊺d ∶= �, �d ∶= ⊺, (¬φ)d ∶= ¬(φd) for all φ ∈ FC ,
(φ ∨ ψ)d ∶= φd ∧ ψd for all φ,ψ ∈ FC ,
(φ ∧ ψ)d ∶= φd ∨ ψd for all φ,ψ ∈ FC ,
(φ→ ψ)d ∶= φd /← ψd for all φ,ψ ∈ FC ,
(φ /← ψ)d ∶= φd→ ψd for all φ,ψ ∈ FC .

Not-implied-by is defined as the dual operation of implication. The laws of De Morgan also
apply similarly to implication and not-implied-by. For all primitive valuations v:

J¬(φ ∧ ψ)Kv = J¬φ ∨ ¬ψKv, J(φ→ ψ) ∨ (ψ /← φ)Kv = 1,

J¬(φ ∨ ψ)Kv = J¬φ ∧ ¬ψKv, J(φ /← ψ) ∧ (ψ→ φ)Kv = 0,

J¬(φ→ ψ)Kv = J¬φ /← ¬ψKv,
J¬(φ /← ψ)Kv = J¬φ→¬ψKv.

Proposition 4.12. For every tautology φ, the dual φd is a contradiction, and vice versa.

Proof. Let r ○ v ∶ A → B be a primitive valuation where every primitive is negated, i.e. r ○ v(a) =
r(v(a)) where r(0) = 1 and r(1) = 0. r is an involution, i.e. r(r(b) = b for all b ∈ B. We verify
that JφKv = r(JφdKr○v), by induction on the structure of φ:

• Let φ ∈ A, and JaKv = v(a). Then r(JaKr○v) = r(r ○ v(a)) = v(a).

• Let φ = ⊺, and J⊺Kv = 1. Then r(J�Kr○v) = r(0) = 1. Similar for φ = �.

• Let φ = ¬φ1, and J¬φ1Kv = r(Jφ1Kv). Our induction hypothesis is Jφ1Kv = r(Jφd1Kr○v).
Then r(J¬φd1Kr○v) = r(r(Jφd1Kr○v)) = r(Jφ1Kv).

• Let φ = φ1◻φ2. Our induction hypotheses are Jφ1Kv = r(Jφd1Kr○v) and Jφ2Kv = r(Jφd2Kr○v).
See the following truth-tables.

Jφ1Kv Jφd1Kr○v Jφ2Kv Jφd2Kr○v Jφ1 ∨ φ2Kv Jφd1 ∧ φd2Kr○v Jφ1 ∧ φ2Kv Jφd1 ∨ φd2Kr○v
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1
1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0

Jφ1Kv Jφd1Kr○v Jφ2Kv Jφd2Kr○v Jφ1→ φ2Kv Jφd1 /← φd2Kr○v Jφ1 /← φ2Kv Jφd1 → φd2Kr○v
0 1 0 1 1 0 0 1
0 1 1 0 1 0 1 0
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 1

A tautology φ ∈ FE has the valuation JφKv = 1 for all primitive valuations v. Therefore
JφKr○v = 1 also holds, since r ○ v is also a primitive valuation. Thus, JφKr○v = r(JφdKr○r○v) =
r(JφdKv), and JφdKv = 0. Therefore φd is a contradiction. Argument also follows vice versa.
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Natural Deduction System We define a dual natural deduction system by interpreting all premises,
assumptions and conclusions of the rules of the standard natural deduction systemNc by the du-
ality interpretation ⋅d, below. For every deduction in Nc, there exists a dual deduction in Ncd.

Definition 4.13. A proof tree ofNcd with respect toFE is constructed inductively, with the rules:

D
φ
D′
ψ

φ ∨ ψ
∨i

D
φ ∨ ψ
φ

∨e1
D

φ ∨ ψ
ψ

∨e2
D
φ

φ ∧ ψ
∧i1

D
ψ

φ ∧ ψ
∧i2

D
φ ∧ ψ

[φ]u
D′
χ

[ψ]w
D′′
χ

χ
∧e, u,w

[φ]u
D
ψ

φ /← ψ
/←i, u

D
φ /← ψ

D′
φ

ψ
/←e

D
⊺
φ
⊺e
D
φ
D′
¬φ
⊺

¬e

[φ]u
D
⊺
¬φ

¬i, u
φ ∧ ¬φ LNC �

�i

However, this natural deduction systemNcd is not able to derive formulas constructed with→,
which is a serious drawback. This system is also not sound and complete with respect to semantic
entailment, since we have already seen that ⋅d is not truth-preserving.

Proposition 4.14. The derivation ∣
Ncd
φ holds if and only if φ is a contradiction.

Proof. Consider towards absurdity, that ∣
Ncd
φ holds but φ is not a contradiction or φ is a contra-

diction but ∣
Ncd
φ does not hold. We know that if φ is a tautology then φd is a contradiction and that

if φ is a contradiction then φd is a tautology by Proposition 4.12. Since we merely interpreted the
rules ofNc intoNcd, this would imply that ∣

Nc
φ holds but φ is not a tautology or φ is a tautology

but ∣
Nc
φ does not hold. That contradicts soundness or completeness of Nc, respectively.

The following result is not very surprising: the system Nc is similar to the system Ncd.

Proposition 4.15. Nc ≃Ncd

Proof. Follows from the construction ofNcd.

Given a tautology φ, we obtain the contradiction φd by Proposition 4.12. Then ¬φd is a tautol-
ogy again. A natural deduction system that is complete with respect to entailment in the classical
sense must derive any such negated-dual tautology. We will use this observation in the next sec-
tion, where we try to obtain a natural deduction system that is sound and complete with respect to
entailment in this sense. In general we suspect the following:

Conjecture 4.16. Given a natural deduction system D and a suitable duality interpretation ⋅d, D
is only complete with respect to classical semantics if it holds that φ1, . . . , φn ⊢ ψ if and only if
¬φd1, . . . ,¬φdn ⊢ ¬ψd.

Even more general, we suspect the following:

Conjecture 4.17. A given natural deduction system D is only sound and complete with respect to
classical semantics if for all truth-preserving interpretations t it holds that φ1, . . . , φn ⊢ ψ if and
only if t(φ1), . . . , t(φn) ⊢ t(ψ).
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TOP (α) BOT (α) IMP1 NIB1 IMP2 NIB2 NOR NAND NOT (β) ID (β)
α→α α /←α α→ β α /← β β→α β /←α α /← (β→α) α→ (β /←α) α /← (α→ β) (α→ β) →α

β /← (α→ β) β→ (α /← β) α→ (α /← β) (α /← β) /←α
α /← ⊺ ⊺→α
α→� � /←α

α
OR AND XOR EQUIV

(α→ β) → β (α /← β) /← β (α→ β) → (α /← β) (α /← β) /← (α→ β)
(β→α) →α (β /←α) /←α (β→α) → (β /←α) (β /←α) /← (β→α)

Figure 3: Equivalence classes, dummy variable in parenthesis, all 16 binary functions.

4.3 Arrows
We will investigate a system consisting only of implication and not-implied-by. Let the set of
connectives be A = {→, /←}. The set of alternative formulas FA is a subset of the extended
formulas FE of the previous section. The main idea presented in this section is that we combine
the techniques of minimal formulas and duality to form a new natural deduction system. We show
an interpretation of standard formulas as alternative formulas and a natural deduction system,
called Na, for alternative deduction (or arrow deduction). Finally, we prove the soundness and
completeness with respect to classical semantic entailment of this alternative system by similarity
withNm(+DN).

Intuition We first provide some intuition working only with → and /←. Intuitionistic logic, and
the Brouwer–Heyting–Kolmogorov interpretation to be more precise, interprets the implication
connective as the existence of a function that transforms a proof of the left direct subformula into
a proof of the right direct subformula, see [GLT89] and [Tro99]. In Definition 4.2, we translate
φ ∨ ψ into (φ→ ψ) → ψ, which bears the intuition that a disjunction is a nested transformation:
we can transform a function of a proof of φ that results in a proof of ψ into a proof of ψ. If we
already have a proof of ψ, then we may always transform any other proof into a proof of ψ. And
in the other case, if we already have a proof of φ, then we may transform it into a proof of ψ by
the assumed nested transformation. Thus, either φ is provable or ψ is provable (the intuitionistic
interpretation of disjunction).

The dual of φ∨ψ is φ∧ψ, which is translated by Definition 4.2 into a formula that is not easily
explained. However, in Definition 4.18, φ ∧ ψ is translated as (φ /← ψ) /← ψ. Intuitively, we may
understand φ /← ψ as a proof of a counter-example of the implication ψ→ φ, i.e. that no function
exists that transforms a proof of ψ into a proof of φ. We need to provide a counter-example to
the implication ψ→ (φ /← ψ), thus we need a concrete example where we prove that ψ holds and
that φ /← ψ does not hold. To prove that φ /← ψ does not hold, we need to provide a function of
ψ→ φ. Since we already have the proof that ψ holds, we still require a proof of φ. Therefore, to
prove (φ /←ψ) /←ψ we need both a proof of φ and a proof of ψ (the intuitionistic interpretation of
conjunction).

Interpretation Alternative formulas admit a classical interpretation given by Definition 3.4. Be-
fore we consider any other interpretations, we observe the equivalence classes in Figure 3. For
all α,β ∈ FA , the formulas shown in columns are equivalent. Note that dummy variables do not
have any influence on a valuation, i.e. top and bottom always evaluate to a certain value regardless
of α. The column of ID is remarkable since it contains both direct sub-formulas of Peirce Law we
saw earlier, viz. (α→ β) → α is equivalent to α.

Since top and bottom are independent of its dummy variable, we will make use of an arbitrary
χ ∈ FA/{⊺,�,¬}. It seems easier to define a countably infinite number of interpretations than to
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introduce a formal notion of some “do not care”-symbol. We define an interpretation of standard
formulas as alternative formulas in Definition 4.18.

This interpretation is idempotent, i.e. (φa)a = φa. Note that this interpretation is also truth-
preserving, i.e. for all φ ∈ FS it holds that φ ≡ φa. For formulas in FA we also use the symbols:
� ∶= χ /← χ, ⊺ ∶= χ→ χ and for any φ ∈ FA we let ¬φ ∶= φ→ (χ /← χ).

Definition 4.18. Given an arbitrary χ ∈ FA, called the dummy formula. For any formula φ we
inductively construct an alternative formula φa by ⋅a ∶ FC → FD, with respect to some C ⊆
{⊺,�,¬,∧,∨,→, /←}:

φa ∶= φ for all φ ∈ A,
⊺a ∶= χ→ χ,

�a ∶= χ /← χ,

(¬φ)a ∶= φa→ (χ /← χ) for all φ ∈ FC ,
(φ ∨ ψ)a ∶= (φa→ ψa) → ψa for all φ,ψ ∈ FC ,
(φ ∧ ψ)a ∶= (φa /← ψa) /← ψa for all φ,ψ ∈ FC ,
(φ→ ψ)a ∶= φa→ ψa for all φ,ψ ∈ FC ,
(φ /← ψ)a ∶= φa /← ψa for all φ,ψ ∈ FC .

Natural Deduction System We define a natural deduction system with rules for the introduction
and elimination for implication and not-implied-by below.

Definition 4.19. A proof tree ofNa with respect to FA is constructed inductively with the rules:

[φ]u
D
ψ

φ→ ψ
→i, u

D
φ→ ψ

D′
φ

ψ
→e1

D
¬(φ→ ψ)

φ
→e2

D
¬φ

D′
ψ

φ /← ψ
/←i

D
φ /← ψ

¬φ /←e1

D
φ /← ψ

ψ
/←e2

Before we continue, we explain the significance of the rule→e2 . It is a generalization of double
negation elimination, the axiom in Nm(+DN) of Definitions 4.4 and 4.7, since if ψ = �, it allows
us to deduce φ from ¬¬φ. We have obtained this rule by the suggestion of Conjecture 4.16. We
verify that the following rules are derivable in Na:

[¬φd]u
D
¬ψd

¬(φd /← ψd)
→di , u

D
¬(φd /← ψd)

D′
¬φd

¬ψd
→de1

D
¬¬(φd /← ψd)

¬φd
→de2

D
¬¬φd

D′
¬ψd

¬(φd→ ψd) /←di

D
¬(φd→ ψd)

¬¬φd
/←de1

D
¬(φd→ ψd)

¬ψd
/←de2
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First, we can get rid of all ⋅d markers, since a rule applies to all formulas, including dual formulas.
Additionally, let n ∶ FA → FA be a truth-preserving, identity interpretation except for n(¬¬φ) ∶=
φ. It eliminates double negations, which according to Conjecture 4.17 is a necessary condition for
soundness and completeness. We now verify that in Na the following rules are derivable:

[¬φ]u
D
¬ψ

¬(φ /← ψ) →
d
i , u

D
¬(φ /← ψ)

D′
¬φ

¬ψ →de1

D
φ /← ψ

¬φ →de2

D
φ
D′
¬ψ

¬(φ→ ψ) /←di

D
¬(φ→ ψ)

φ
/←de1

D
¬(φ→ ψ)

¬ψ /←de2

Again we assume in all following proofs that there is an unlimited supply of unused distinct
markers u1, u2, . . .. The rule →di is derivable in Na:

φ /← ψu1

ψ
/←e2

[¬φ]u
D
¬ψ

¬φ→¬ψ
→i, u

φ /← ψu1

¬φ /←e1

¬ψ
→e

�
→e

¬(φ /← ψ)
→i, u1

The rule →de1 is derivable in Na:

¬(φ /← ψ)u2

¬φu3 ψu1

φ /← ψ
/←i

�
→e

¬ψ
→i, u1

The rule →de2 is trivially derivable in Na. The rule /←di is derivable in Na:

¬ψu2

φ→ ψu1 φu3

ψ
→e

�
→e

¬(φ→ ψ)
→i, u1

The rule /←de1 is trivially derivable in Na. Indeed, we have introduced this rule precisely
because we failed to derive it. The rule /←de2 is derivable in Na:

¬(φ→ ψ)u2

ψu1

φ→ ψ
→i

�
→e

¬ψ
→i, u1
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Similarity To show the soundness and completeness of Na, we show that the interpretation of
Definition 4.2, partially reproduced below, is provability-preserving and thus suitable for proving
the similarity Na ≃Nm(+DN). We also partially reproduce the interpretation a ∶ FC → FA with
respect to some χ below. Again it seems easier to define a countably infinite number of minimal
formula interpretations.

Definition. For any formula φ we inductively construct a formula φ† by ⋅† ∶ FA → FM :

(φ→ ψ)† ∶= φ†→ ψ† for all φ,ψ ∈ FC ,
(φ /← ψ)† ∶= (ψ†→ φ†) → � for all φ,ψ ∈ FC .

Definition. For any formula φ we inductively construct a formula φa by ⋅a ∶ FM → FA with
respect to the dummy variable χ ∈ FA:

�a ∶= χ /← χ,

(φ→ ψ)a ∶= φa→ ψa for all φ,ψ ∈ FM .

Both interpretations are truth-preserving.

Theorem 4.20. Na ≃Nm(+DN)

Proof. (⇒) We show that ⋅† is a provability-preserving interpretation from Na with respect to
χ to Nm(+DN). Let χ† be the interpretation of χ. Given a derivation Γ ⊢ ψ of Na, we show a
derivation Γ† ⊢ ψ† ofNm(+DN), by showing that all rules of the former are derivable in the latter,
i.e. we show only one case of the similarity Na† ∼ Nm(+DN), where, given a derivation Γ ⊢ ψ
of Na†, we show a derivation Γ ⊢ ψ ofNm(+DN).

Rules →i, →e1 are trivial. For the rule →e2 of Na, the interpretation →†
e2 of Na† with con-

clusion φ† and assumption (φ†→ ψ†) → (χ†→ χ†) → � is derivable in Nm(+DN):

((φ†→�)→ �)→ φ† DN

((φ /← ψ)†)u5 (φ†→ ψ†)u2

(χ†→ χ†) → �
→e

(χ†)u3

χ†→ χ†
→i, u3

�
→e

(φ†→ ψ†) → �
→i, u2

((ψ†→�)→ �)→ ψ† DN

φ†→�u1 (φ†)u4

�
→e

(ψ†→�)→ �
→i

ψ†
→e

φ†→ ψ†
→i, u4

�
→e

(φ†→�)→ �
→i, u1

φ†
→e

For the rule /←i of Na, the interpretation /←†
i of Na† with conclusion (ψ† → φ†) → � and

assumptions φ†→ (χ†→ χ†) → � and ψ† is derivable in Nm(+DN):

((¬φ)†)u4 (φ†)u2

(χ†→ χ†) → �
→e

(χ†)u3

χ†→ χ†
→i, u3

�
→e

φ†→�
→i, u2

(ψ†→ φ†)u1 (ψ†)u5

φ†
→e

�
→e

(ψ†→ φ†) → �
→i, u1

21



For the rule /←e1 of Na, the interpretation /←†
e1 of Na† with conclusion φ† → (χ† → χ†) → �

and assumption (ψ†→ φ†) → � is derivable in Nm(+DN):

((ψ†→ φ†) → �)u2

φu1

ψ†→ φ†
→i

�
→e

(χ†→ χ†) → �
→i

φ†→ (χ†→ χ†) → �
→i, u1

For the rule /←e2 of Na, the interpretation /←†
e2 of Na† with conclusion ψ† and assumption

(ψ†→ φ†) → � is derivable in Nm(+DN):

((ψ†→�)→ �)→ ψ† DN

(ψ†→ φ†) → �

((φ†→�)→ �)→ φ† DN

ψ†→�u1 (ψ†)u2

�
→e

(φ†→�)→ �
→i

φ†
→e

ψ†→ φ†
→i, u2

�
→e

(ψ†→�)→ �
→i, u1

ψ†
→e

(⇐)We show that ⋅a with respect toχ is a provability-preserving interpretation fromNm(+DN)

toNa. Given a derivation Γ ⊢ ψ ofNm(+DN), we show a derivation Γa ⊢ ψa ofNa, by showing
that all rules of the former are derivable in the latter, i.e. we show only one case of the similarity
(Nm(+DN))a ∼ Na, where, given a derivation Γ ⊢ ψ of (Nm(+DN))a, we show a derivation
Γ ⊢ ψ ofNa.

Rules→i,→e1 are trivial. For axiomDN ofNm(+DN), the interpretationDNa of (Nm(+DN))a
with conclusion ((φa→ χ /← χ) → χ /← χ) → φa is derivable in Na:

)¬¬φa)u1

φa
→e2

¬¬φa→ φa
→i, u1

The following theorem follows from similarity, and is not surprising now we have found out
that /←i, /←e1 and /←e2 ofNa are derivable (and thus admissible) rules ofNm(+DN) under a certain
truth-preserving interpretation.

Theorem 4.21. The natural deduction system Na is sound and complete with respect to classical
semantic entailment.
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5 Conclusion
We have given an alternative, constructive proof of the known result that in minimal and intuition-
istic propositional logic one can derive classical tautologies under the admission of certain axioms:
double negation elimination and Peirce’s Law respectively, in Section 4.1. We have shown that
there exists a dual natural deduction system that derives only all classical contradictions, and that
a classical deduction system and its dual are closely related with respect to classical semantics, in
Section 4.2.

We have introduced an alternative natural deduction system for an alternative set of connec-
tives consisting of implication (→) and not-implied-by ( /←), we have investigated the dual of the
alternative system, and we have proved the soundness and completeness of the alternative system
by showing truth-preserving and provability-preserving interpretations to minimal logic with the
axiom of double negation elimination and applying the previously known results of soundness and
completeness of that logic with respect to classical semantics, in Section 4.3.

Future Work Are Conjectures 4.16 and 4.17 true? Is the condition of Conjecture 4.17 not only
necessary but also sufficient?
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A Appendix
The following Java code is used to generate equivalence classes of Figure 3.

1 import java.io.File;

import java.io.PrintStream;

import java.util.HashMap;

import java.util.HashSet;

import java.util.Iterator;

6 import java.util.Map;

import java.util.Set;

public class NormalForms {

static final class Valuation {

private HashMap <Variable , Boolean > store = new HashMap <>();

11 void set(Variable var , boolean val) {

if (var == null) throw null;

store.put(var , val);

}

boolean get(Variable var) { return store.get(var); }

16 }

static abstract class Formula {

abstract boolean evaluate(Valuation primitive);

public abstract String toString ();

abstract int size();

21 abstract boolean equals(Formula other);

public final boolean equals(Object obj) {

if (obj == this) return true;

if (obj instanceof Formula) return equals (( Formula) obj);

return false;

26 }

boolean isTop() { return false; }

boolean isBottom () { return false; }

boolean isSub(Formula sub) {

return sub.equals(this);

31 }

}

static class Variable extends Formula {

String name;

Variable(String name) {

36 if (name == null) throw null;

this.name = name;

}

boolean evaluate(Valuation primitive) {

return primitive.get(this);

41 }

public String toString () { return name; }

int size() { return 1; }

boolean equals(Variable other) {

return name.equals(other.name);

46 }

final boolean equals(Formula other) {

if (other instanceof Variable)

return equals (( Variable) other);

return false;

51 }

public int hashCode () { return name.hashCode (); }

}

25



static class Implication extends Formula {

56 Formula left , right;

Implication(Formula left , Formula right) {

if (left == null || right == null) throw null;

this.left = left;

this.right = right;

61 }

boolean evaluate(Valuation primitive) {

boolean l = left.evaluate(primitive), r = right.evaluate(primitive);

return !l | r;

}

66 public String toString () {

return "(" + left + "\\ rightarrow " + right + ")";

}

int size() {

return left.size() + 1 + right.size();

71 }

boolean equals(Implication other) {

return left.equals(other.left) && right.equals(other.right);

}

final boolean equals(Formula other) {

76 if (other instanceof Implication)

return equals (( Implication) other);

return false;

}

public int hashCode () {

81 int hash = 1;

hash = hash * 31 + left.hashCode ();

hash = hash * 31 + right.hashCode ();

return hash;

}

86 boolean isTop() {

return left.equals(right);

}

boolean isSub(Formula sub) {

return super.isSub(sub) || left.isSub(sub) || right.isSub(sub);

91 }

}

static class NonInitiation extends Formula {

Formula left , right;

NonInitiation(Formula left , Formula right) {

96 if (left == null || right == null) throw null;

this.left = left;

this.right = right;

}

boolean evaluate(Valuation primitive) {

101 boolean l = left.evaluate(primitive), r = right.evaluate(primitive);

return !l & r;

}

public String toString () {

return "(" + left + "\\not\\ leftarrow " + right + ")";

106 }

int size() {

return left.size() + 1 + right.size();

}

boolean equals(NonInitiation other) {

111 return left.equals(other.left) && right.equals(other.right);

}
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final boolean equals(Formula other) {

if (other instanceof NonInitiation)

return equals (( NonInitiation) other);

116 return false;

}

public int hashCode () {

int hash = 1;

hash = hash * 31 + left.hashCode ();

121 hash = hash * 31 + right.hashCode ();

return hash;

}

boolean isBottom () {

return left.equals(right);

126 }

boolean isSub(Formula sub) {

return super.isSub(sub) || left.isSub(sub) || right.isSub(sub);

}

}

131 static abstract class Permutation implements

Iterable <Formula >, Iterator <Formula > {

public abstract void reset();

public abstract boolean hasNext ();

public abstract Formula next();

136 public final Iterator <Formula > iterator () { return this; }

}

static class VariablePermutation extends Permutation {

int cur , max;

VariablePermutation(int max) {

141 if (max < 1) throw null;

this.max = max;

}

public void reset() { cur = 0; }

public boolean hasNext () { return cur < max; }

146 public Variable next() {

if (cur >= max) throw new IllegalStateException ();

cur ++;

return new Variable("a_" + cur);

}

151 }

static class TreePermutation extends Permutation {

Formula left , right;

Permutation [] pers;

int depth , cur;

156 TreePermutation(int depth) {

this(1, depth);

}

TreePermutation(int max , int depth) {

if (depth < 1) throw null;

161 this.depth = depth;

pers = new Permutation[depth * 2];

for (int i = 1; i <= depth; i++) {

pers[i * 2 - 2] = (i == 1) ?

new VariablePermutation(max) : new TreePermutation(max , i - 1);

166 pers[i * 2 - 1] = (i == depth) ?

new VariablePermutation(max) : new TreePermutation(max , depth -i);

}

}
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171 public void reset() {

for (cur = depth; cur > 0; cur --) {

pers[cur * 2 - 2]. reset ();

pers[cur * 2 - 1]. reset ();

}

176 }

public boolean hasNext () {

if (right != null) return true;

if (left != null) {

if (pers[cur * 2 + 1]. hasNext ()) return true;

181 left = null;

}

for (; cur < depth; cur++)

if (pers[cur * 2]. hasNext ()) return true;

return false;

186 }

public Formula next() {

if (right != null) {

Formula result = new NonInitiation(left , right);

right = null;

191 return result;

}

retry: while (true) {

if (left != null) {

if (pers[cur * 2 + 1]. hasNext ()) {

196 right = pers[cur * 2 + 1]. next();

return new Implication(left , right);

}

left = null;

}

201 for (; cur < depth; cur++)

if (pers[cur * 2]. hasNext ()) {

left = pers[cur * 2]. next();

pers[cur * 2 + 1]. reset ();

continue retry;

206 }

throw new IllegalStateException ();

}

}

}

211 static class NormalPermutation extends Permutation {

int max , depth;

Permutation cur;

NormalPermutation () { this (1); }

NormalPermutation(int max) {

216 if (max < 1) throw null;

this.max = max;

this.cur = new VariablePermutation(max);

}

public void reset() {

221 cur = new VariablePermutation(max);

depth = 0;

}

public boolean hasNext () { return true; }

226
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public Formula next() {

while (true) {

231 if (cur != null) {

if (cur.hasNext ())

return cur.next();

cur = null;

}

236 depth ++;

cur = new TreePermutation(max , depth);

}

}

}

241 static int count = 0;

static Set <Formula > visited = new HashSet <>();

static Map <String , Set <Formula >> groups = new HashMap <>();

public static void main(String [] args) throws Exception {

System.setOut(new PrintStream(new File("out.txt")));

246 System.out.println("<table >");

System.out.println("<thead >");

System.out.println("<tr><th>Type </th ><th>Formula </th ><th ></th><th>

Minimal Formula </th ><th>Truth -table </th ></tr>");

System.out.println("</thead >");

System.out.println("<tbody >");

251 printTableBody (3, 10);

System.out.println("</tbody >");

System.out.println("</table >");

}

static void printTableBody(int max , int depth) {

256 String type = "\\ alpha_{" + max + "," + depth + "}";

perm: for (Formula f : new TreePermutation(max , depth)) {

Set <Formula > form = getMinimalForms(f, max);

if (form.isEmpty ()) continue perm;

form.add(f);

261 for (Formula q : form) if (visited.contains(q)) continue perm;

visited.addAll(form);

String group = "\\ Delta_{" + (++ count) + "}";

System.out.print("<tr>");

System.out.print("<th >\\(");

266 System.out.print(type);

System.out.print("\\) </th ><td >\\(");

System.out.print(group);

System.out.print("\\) </td ><td >\\(=\\) </td >");

System.out.print("<td >\\(\\{\\)");

271 boolean comma = false;

for (Formula a : form) {

System.out.print("\\(");

if (comma) System.out.print(',');

System.out.print(a);

276 System.out.print("\\)");

comma = true;

}

System.out.print("\\(\\}\\) </td >");

System.out.print("<td>");

281 printTruth(f, max);

System.out.print("<td>");

System.out.println("</tr>");

}

}
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286 // Find some minimal form of provided formula; formula must only consist

// of standard a1, ..., aN variables , provided some positive n <= 16.

static Set <Formula > getMinimalForms(Formula form , int n) {

if (n <= 0 || n > 16) throw new IllegalArgumentException ();

if (form == null) throw null;

291 Set <Formula > result = new HashSet <Formula >();

int size = form.size();

for (Formula norm : new NormalPermutation(n)) {

if (norm.size() > size)

return result;

296 if (isEquivalent(norm , form , n)) {

if (norm.isBottom () || norm.isTop ())

return result;

result.add(norm);

}

301 }

throw new Error();

}

static boolean isEquivalent(Formula a, Formula b, int n) {

Valuation v = new Valuation ();

306 Variable [] vars = new Variable[n];

for (int j = 0; j < n; j++)

vars[j] = new Variable("a_" + (j + 1));

int ubound = 1 << n;

for (int i = 0; i < ubound; i++) {

311 int lbound = 1;

for (int j = 0; j < n; j++) {

v.set(vars[j], (i & lbound) == lbound);

lbound <<= 1;

}

316 if (a.evaluate(v) != b.evaluate(v)) return false;

}

return true;

}

static void printTruth(Formula a, int n) {

321 Valuation v = new Valuation ();

Variable [] vars = new Variable[n];

for (int j = 0; j < n; j++) vars[j] = new Variable("a_" + (j + 1));

int ubound = 1 << n;

System.out.print("<table >");

326 for (int i = 0; i < ubound; i++) {

System.out.print("<tr>");

int lbound = 1;

for (int j = 0; j < n; j++) {

System.out.print("<th>");

331 boolean val = (i & lbound) == lbound;

v.set(vars[j], val);

System.out.print(val ? 't' : 'f');

System.out.print("</th>");

lbound <<= 1;

336 }

System.out.print("<td>");

System.out.print(a.evaluate(v) ? 't' : 'f');

System.out.print("</td ></tr>");

}

341 System.out.print("</table >");

}

}
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