
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

A Reo Semantics for Reasoning
about Speculative Execution

Author: Hans-Dieter A. Hiep (2526195)

1st supervisor: dr. Jasmin C. Blanchette (VU)
cosupervisor: prof. dr. Farhad Arbab (CWI)

2nd reader: dr. Femke van Raamsdonk (VU)

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

October, 2018

Abstract

Speculative execution is a technique used in popular processors designed in the
past decade, e.g. by Intel and AMD. Take, for example, this imperative program:

int outcome = slowOperation();
if (outcome < 0) doThis();
else doThat();

Before the slowOperation() is finished executing, one may speculate on its
outcome. There is a branch prediction function that chooses a value, which
we call a speculation, used to evaluate the if-statement concurrently with the
slowOperation(). The outcome can be negative or non-negative, leading to
the speculative execution of doThis() or doThat(), respectively. Once the
slowOperation() returns, its actual outcome is known. If the speculation is
incorrect when compared with the actual outcome, then we need to undo any
of the computational steps performed based on such a false speculation. This en-
sures that no unwanted steps are visible outside the processor. Otherwise, if the
speculation is correct, then we have gained throughput by already performing
steps ahead of time based on a true speculation.

Reo is a language for compositional construction of protocols for the coordi-
nation of concurrent and distributed systems. As far as we know, Reo has never
before been used to study speculative executions. We design a typed language
of compositions and components inspired by Reo. We introduce components
not modeled before in Reo: prophet and pull. Prophet is a component that
generate speculations. Pull is a component that enforces progress and forbids
deadlocks. The behavior of components are constrained using formulas in a first-
order logic with data types and data streams. This logic is expressive enough
to formulate properties such as deadlock-freedom and livelock-freedom, and other
properties important for understanding speculative executions in concurrent and
distributed systems: delay insentivity, independence, (a)synchronicity, termina-
tion, instantaneousness, linearity and causality.

Contents

1 Introduction 1
1.1 Speculative Execution . 2
1.2 Running Example . 4

2 Language 13
2.1 Compositions . 13
2.2 Interfaces . 16
2.3 Components . 17

3 Foundation 23
3.1 Data Streams . 23
3.2 Logical Formalism . 24
3.3 Coordination Protocols . 27
3.4 Coordination Games . 32

4 Components 35
4.1 Endpoints . 36
4.2 Channels . 37
4.3 Buffers . 39
4.4 Nodes . 41

5 Properties 45
5.1 Independence . 48
5.2 Synchronicity . 51
5.3 Deadlock and Livelock . 54
5.4 Instantaneousness . 57
5.5 Linearity . 59
5.6 Causality . 60

6 Conclusion 63
6.1 Summary . 64
6.2 Related Work . 64

Bibliography 65

i

Acknowledgments

Many thanks to Farhad Arbab for inspiring discussions, suggesting interesting
research topics, and reading thoroughly through this thesis while providing lots
of comments on this document. Thank you, Jasmin Blanchette, for the many
discussions how to write effectively, for providing useful feedback, and giving
the right definition of the logical formalism.

Thank you a lot, Benjamin Lion, for sharing an office, always willing to listen
to ideas, and havingmany deep discussions on concurrency, Reo, Kleene, Russels,
and Spinoza. Thanks for the oportunities for discussion and insightful comments
given by Kasper Dokter and Sung-Shik Jongmans.

Other people that deserve thanks: Femke van Raamsdonk (for being the sec-
ond reader of this document), Jacco van Splunter & Roy Overbeek (for discus-
sion), and Wan Fokkink (for his inspiring teaching).

Special thanks go to the people of the Centrum voor Wiskunde & Informatica
(CWI) for allowing work on this thesis during an internship period of fourty-five
weeks. In particular, thank you, Steven Pemberton, for giving a good reason to
come to CWI, and Frank de Boer for approving the internship. Thanks to Jana
Wagemaker, Keyvan Azadbakht, Vlad Serbanescu, Jan Rutten, and others in the
Formal Methods group for being nice collegues.

To those other people not listed here, but who still provided useful support:
thank you!

ii

This page is intentionally left blank.

iii

Chapter 1

Introduction

A recent interest in the security of microcode architectures of mainstream proces-
sors revealed issues (popularly known as Meltdown, Spectre, and Foreshadow;
see Kocher et al. [54]). These architectural issues demonstrate side-channel
attacks caused by a combination of branch prediction, cache hierarchy, simul-
taneous multi-threading and speculative execution. In particular, it turns out
that when computation is not reversible under certain conditions, this leads to a
systematic leakage of privileged information. Mitigation of these issues has seri-
ous impact for large-scale computing service providers: under certain workloads
perceived performance is reduced by 50% [4].

Speculative execution is a well known technique that allows for the optimiza-
tion of concurrent systems. Over the course of the critical path of an execution,
the number of idle resources varies. Onemay exploit idle resources by speculative
execution that potentially shortens the critical path length to increase through-
put. However, speculative execution may also negatively affect throughput if a
false speculation must be reverted.

The essence of reversible computing is that every operation can be reverted.
This has beneficial properties in itself: ideally, a reversible computation does
not dissipate power and thus is highly energy efficient [77]. Some claim that
adoption of reversible computing is necessary [40]: the rate of performance im-
provements of general-purpose computing, as seen in the last decades, comes
at greater energy cost than before. Reversible computing allows for significantly
less energy usage without negatively affecting performance, thus allowing for
performance improvements to continue.

In this thesis, we aim to gain an intuitive understanding of concurrency, spec-
ulative execution, and reversible computing. Our vision is to establish logical
foundations for concurrent and distributed systems. We employ a structured
approach by modeling interactive computing systems as coordination protocols
using Reo. Reo is a coordination language for compositional construction of in-
teraction protocols [9, 8]. Coordination is the study of dynamic topologies of
interaction between computing systems [5].

On the practical side, Reo manifests as a high-level declerative programming
language for constructing concurrent and distributed systems. For example, re-
cently developed compilers produce concurrency glue code which links together
single-threaded code. Programmers write single-threaded code in a supported
programming language, and design interaction patterns in Reo: the compiler

1

fills in the gap. This is beneficial to programmers who no longer need to have
in-depth technical knowledge of concurrency, likely leading to an increase in
productivity and decrease in the number of concurrency-related software bugs.

There are two benefits of raising the level of abstraction that programmers
use to define interactions. First, abstraction alleviates programmers from di-
rectly working with low-level concurrency primitives (e.g. semaphores, locks,
send/receive) and debugging concurrency errors (e.g. race conditions, dead-
locks). Instead, programmers specify coordination protocols decleratively, to
define the permissible interactions among external single-threaded programs,
thus separating their concerns for computation and concurrency. Second, ex-
periments show that concurrency code generated by Reo compilers has run-time
performance similar to hand-crafted concurrency code [49]. This is achieved
by performing program optimization directly on the higher-level coordination
protocols, as opposed to the lower-level of concurrency primitives.

Over the years Reo has developed a rich theory, as demonstrated by over
thirty formal semantics [50]. These semantics can be roughly divided into three
groups: co-algebraic models (e.g. streams), operational models (e.g. automata),
and others. We introduce yet another semantics of Reo, and use it to explore fun-
damental properties of concurrent and distributed systems. Properties related to
speculative execution are more easily expressed in our semantics than in other
Reo semantics.

Our presentation of Reo is novel in a way: we focus on the detection of incon-
sistencies. An inconsistency is a situation in which no valid behavior is specified.
Such inconsistencies are effectively resolved by tracing back to a nearest branch
point from which execution can be resumed safely. We shed light on dualities
present in our language, by the definition of so-called buffers and prophets,
that correspond to history variables and future variables [1]. Our language is a
dialect of Reo. We define a calculus of graphical notations for components. We
have designed a type checker that is closely related to classical sequent calculus
[29, 34].

The main result of this thesis is the establishment of a logical formalism for
defining specifications of the behavior of components, and properties important
for understanding speculative execution. We define the syntax of our typed co-
ordination language (Chapter 2). We use a first-order logic for expressing primi-
tive component as formulas, and compositionally interpret our coordination lan-
guage as coordination protocols (Chapter 3). Coordination games are introduced
in Section 3.4. We provide a non-exhaustive overview of components (Chapter
4). We establish the properties of delay insensitivity, independence, synchronic-
ity and asynchronicity, progress and termination, deadlock-freedom and livelock-
freedom, instantaneousness, linearity, and causality (Chapter 5). We finally argue
that this thesis is a contribution to the logical foundations of concurrent and dis-
tributed systems, and the logical foundations of Reo in particular (Chapter 6).

1.1 Speculative Execution

Central processing units (CPUs) with an instruction pipeline architecture employ
out-of-order execution as a technique to increase performance of single-threaded
code [76]. The behavior of a single-threaded program is defined by the order
of its instructions. With out-of-order execution, instructions can execute ahead-

2

of-time such that the overall system behavior is correspondingly equivalent to
that of an in-order execution. Reordering instructions in a pipeline increases the
throughput of executed instructions, by efficiently planning the use of compu-
tational resources such as arithmetic and logic units (ALUs) and floating point
units (FPUs), that results in better run-time performance.

At the level of CPUs, speculative execution is a variant of out-of-order exe-
cution. A speculation predicts a future state of a processor, and consequent in-
structions are performed ahead-of-time under the assumption of validity of that
future state. At some time after a prediction, actual processor state is compared
with the earlier predicted state. If the predicted future state is valid, then the
processor has performed a true speculation and the consequent instructions cor-
respond to that of an in-order execution. However, if the predicted future state
is not valid, then the effects of instructions performed under a false speculation
need to be reverted.

Speculative execution does not apply to hardware only. For example, specu-
lative multi-threading implements speculative execution in software [18]. Spec-
ulative execution is also conceivable in distributed systems.1

Speculative execution in concurrent systems can either increase or decrease
throughput [44]. The rate of increased throughput depends on the particular
implementation technique applied, of which there are multiple. We consider a
simplistic model of the two extreme cases: embarrassingly parallel and back-
tracking.

An embarrassingly parallel implementation branches into multiple isolated
systems and performs computation in all branches concurrently. The separate
branches are isolated systems and thus may not communicate with each other.
The number of branches is the size of the domain of the prediction, e.g., a
Boolean prediction branches off into two systems. Precisely one branch assumes
the true speculation. This technique has the highest gain in throughput because
every possibility executes concurrently. Branches that compute based on a false
speculation are simply discarded.

A backtracking implementation chooses a single branch at a time, as in our
previous example of CPUs. We require a branch prediction function, that is typi-
cally chosen to maximize the likelihood of a true speculation. The branch predic-
tion function determines which branch to perform first. If this branch is based
on a false speculation, the branch is discarded by reverting computation back
to the point where the true speculation branches off. This technique requires
computation in a branch to be reversible, to be able to revert in the case of a
false speculation. Throughput may be affected negatively if one takes a branch
assuming a false speculation, since the branch first needs to be reverted before
the true computation may commence. Thus, the qualitiy of the branch prediction
function greatly impacts the cost of a backtracking implementation.

In summary, we think of these two extremes as a trade-off between time
and space. The embarrassingly parallel implementation has negligible time over-
head, but has a space overhead linear in the number of branches to compute
speculatively. The backtracking implementation has negligible space overhead,
but requires time linear in the depth of the speculative computation that needs
to be reverted. Other techniques exists between these extremes: for example, ea-

1It is an urban legend that sending a specific HTTP responses before any HTTP request is received
increases throughput of web-servers. This was supposedly used in early webcam software [63].

3

ger execution executes all branches with negligible space overhead by preemptive
scheduling, similar to an iterative deepening search strategy [79].

Throughout this section, we construct a (toy) processing unit to explain spec-
ulative execution in more detail. Our toy is used as the running example. The
construction of a processing unit is not necessarily centralized (like CPUs), and
can also be considered a decentralized processing unit. It is not our goal to con-
struct a fully functional CPU. Our approach is as follows:

1. We construct our processor in a modular fashion to allow reasoning about
smaller individual pieces first. Compositionality of reasoning ensures that
the end result of composing all pieces together behaves as designed. This
explains the basics of how to use Reo to compose components.

2. We give a high-level and low-level explanation of how components com-
municate and cooperate. This gives us a better intuition for understanding
the formal theory, and helps us understand the nature of speculative exe-
cution.

The intended purpose of our example is to demonstrate three layers:
1. Syntax. The functionality of our processor is specified by combining specifi-

cations of more primitive components. Our syntax makes this combination
explicit and unambiguous.

2. Semantics. Components interact by means of playing a coordination game.
The objective of the game is to avoid any inconsistent configurations.

3. Logic. We reason about compositional properties, and the necessity of re-
versibility of computations based on speculation, to argue that backtrack-
ing is an effective implementation strategy.

1.2 Running Example

Essential units in processors are arithmetic units. It is well known that arith-
metical operations, such as addition, multiplication, and division, are not always
constant-time operations: complexity of these operations depens on trade-offs
made by processor architects.

Suppose we wish to compute (12+ 21)× 3. We consider the following two
functional components: addition and multiplication. The following circuit
combines these components, and connects the input to the values 12, 21, 3 and
the output to some printing device.

�

B

C� �

B

C�

12

21

3

print�r

x

y

The addition component simultaneously takes the values 12 and 21 and com-
putes their sum. The multiplication component takes this result and the value
3 and multiplies them. Finally, the result of 99 is printed.

A component consists of ports to allow for external information flow, or in-
teraction with the outside world. These ports form the interface of a component.

4

An input port allows external information to flow in, and an output port allows
information to flow out.

This circuit forms a composition of two components. There are two instances:
x and y. The first is an instance of an addition component, the latter an instance
of a multiplication component. Each instance of a component has a number of
ports, which we write qualified as x.A, x.B, x.C, y.A, y.B, y.C. In our composition,
we link ports together to indicate that these ports are identical: here x.C and y.A
are linked together to mean that the output port C of x is the input port A of y.
We call this identification.

The white boxes around our composition are part of an experimental setup:
the values 12, 21, 3 are ready for consumption and the printer is ready to accept
an outcome. These are not part of the composition, and instead form a testing
environment. Ports x.A, x.B, y.B, y.C are linked to the testing environment.

If we were to observe the data that flows through ports during experimenta-
tion we can collect a trace. The arithmetical components are functional, meaning
that they only operate if all of their inputs are available. The component asyn-
chronously computes its output at some later time. Typically, one abstracts this
fact by assuming that arithmetic is performed instantaneously, but in our exam-
ple we use arithmetic to demonstrate speculative execution.

Other essential units are logical units that can compare values and perform
logical operations. The outcome of a logical operation allows so-called branching,
where we test a condition and conditionally perform operations.

Consider, for example, comparing 12 with 13. If they are equal, we print some
value; otherwise, we do nothing. In a typical imperative programming language,
e.g. pseudo Java, one would write:

if (12 == 13) {
return "equal";

}

This is given declaratively by the following circuit:

A

B

C�12

13

\equal� print�r

x

D

E

=

>

A

y

B

A

z

B

C

w�

A

w2

A

There are five components in this picture, again surrounded by a testing envi-
ronment. The component x is a comparator that compares x.A and x.B. We have
two instances of the same component: w1 and w2 are both a so-called garbage
component that disposes all its inputs. The component y is a synchronous
drain that mediates synchronization in this circuit. Component z is a repli-
cator that instantaneously transports its input z.A by duplicating it to z.B and
z.C.

The semantics of this circuit is as follows: if x.A is smaller than x.B, then x.C
fires a signal; if x.A equals x.B, then x.D fires; if x.A is larger than x.B, then x.E

5

fires. The replicator and synchronous drain act as a control valve. If x.D
fires a signal, only then the synchronous drain allows an input on y.B. How-
ever, if x.D does not fire, then y.B is inhibited. This inhibition spreads through the
replicator, blocking its input z.A. Thus, in case the two inputs are equal, we
have that y synchronizes this result with the replicator, allowing it to output
to z.C into the printer.

In the imperative program, the conditional check is typically assumed to be
performed causally before the print statement. In our circuit, the conditional
check and the output to the printer are synchronous: they happen instanta-
neously to the observer. This means that, in principle, the output can be sent to
the printer before the conditional check is performed. Intuitively, synchronous
actions express atomic groupings of actions, which represents an abstraction of
the precise ordering of individual actions, as this ordering is irrelevant.

That the replicator and synchronous drain act as a control valve can
be made explicit, by turning it into a composite component:

�

y

B

�

z

B

CB

�

CB

�

C

�=

The left-hand side of := is the graphical mnemonic that defines the composite
component on the right-hand side of :=. The composite component is defined by
a composition of the primitive components y and z. Primitive here means that we
no longer decompose such component any further. Our composite component
has three ports on its boundary: A, B, C. We make explicit which port we mean,
by qualifying the ports by its instance. The ports at the boundary of the defined
composite component remain unqualified. Here we link A to y.A and B to z.A.
Internally, we link z.B to y.B. The output of z.C is linked to C.

Whenever we use the composite component, A and B act as input ports that
accept values. We may link only output ports to input ports. From the interior
perspective, A and B act as input ports. However, at the exterior of y and z, these
ports A and B are output ports of the surrounding composition. The direction of
a boundary port in the interior is opposite to the exterior. For example, from the
perspective of the interior of our composition and the exterior of y, we link the
input port A to the output port y.A. However, the port y.A acts as an input port
from the interior perspective of y.

Another essential unit in processors are registers and memory banks. Typ-
ically, memory in modern CPUs is layed out in a cache hierarchy. This means
that accessing memory has variable and dynamic latency. We specify a simple
memory bank by first considering memory cells. Memory cells are modeled using
controlled variables, for which we reuse our earlier defined control valve:

6

B

�

C

�

B C

� B

� �

CB B C

x

z2z�

w

Our composition consists of two control valves (z1 and z2), a router (x),
and a variable (w). Port A controls one of the two valves on B and C, with a
variable in between. In this picture all input and output ports are explicitly
denoted. This quickly clutters the view.

B

�

CB

�

C

�=

In this picture we no longer draw the component boundaries.
The so-called variable is a primitive component which we consider in Exam-

ple ??. For now, think of variables as a component that continuously outputs its
most recently supplied input value, if any. Thus a variable may output its value
multiple times. Reading of an empty variable is blocked. Variables may be
overwritten. The controlled variable only accepts input or supplies output if
port A fires. Due to the router of signal A, our controlled variable does not
accept input and supply output at the same time. It is impossible for all ports to
fire simultaneously: B or C fire only if A fires.

A variable is not reversible because we can overwrite a value without it ever
being read: consider that it is possible to overwrite a previously stored value
by supplying a value to B twice in a row. The write cannot be reverted, since
the previous value is lost in the process of overwriting. Since a variable is not
reversible, so is a controlled variable: the presence of A, the router, and
control valves does not prevent the possibility of overwriting.

A memory bank consists of multiple memory cells, and a single memory cell
can be activated using an address. The address encodes which memory cell is
active. We consider a memory bank of three memory cells:

B C
B C

�=

MEM�

�� �2 �3�� �2 �3

To read from this memory bank, we supply an address to A and observe the
output port C. To write, we supply an address to A and supply a value to B.

7

The memory bank consists of these components: a demultiplexer, that takes an
address value (e.g. 1,2,3) and translates it into a signal (e.g. A1,A2,A3). We have
three controlled variables that model three memory cells, connected to these
signals: a router takes the input at B and is connected to the input of each cell.
A merger takes the output of each cell and merges into the output C. Both
are depicted with a white dot, but the reader can infer from the direction of the
arrow which component is a router and which is a merger.

We assume that the initial value of all memory cells is empty. An empty
memory cell cannot be read, meaning that its output port does not fire. For a
non-empty memory cell, reading it produces its current value as output.

Now consider the following pseudo-Java code, that assigns to three vari-
ables:

x = 12 + 21; Wx
y = 8 * 3; Wy
if (y < 13) { Ry

z = 4; Wz
} else {

z = 7; Wz
}

We have the following memory actions: Wx, Wy, Wz for write actions, and Ry for
a read action. Each action happens only once in our snippet. We take that x,y,z
are stored in memory cells 1,2,3. The addresses are encoded by constants. We
create the following components:

Wz

W�

Ry

Wy

B C

MEM�

�� �2 �3

These memory actions are connected to the arithmetical and logical units:

8

Wz

W�

Ry

Wy

A

B C

�

12

21

A

B

C

�

8

3

7

4

A

B

C�

D

E

=

>
13

b

This circuit demonstrates the intended out-of-order behavior of our processor.
The + and × components may independently compute their results. Suppose
that 12 + 21 was finished computing after 8× 3, then Wy happens before Wx.
Since Ry must happen after Wy, we have inserted a buffer component (named
x in the diagram). The buffer adds a causal dependency. After reading Ry and
comparing it with 13, we either assign 7 or 4 to z: all these actions happen after
Wy. It is still possible in our circuit that Wx is delayed, after Wz.

A buffer is a component. For now, it intuitively behaves as follows. It waits
for an input to arrive, and stores it in its single-place memory. While the buffer
is full, no new input may arrive. After some time, it may release its output and
clears its memory.

In our circuit, the buffer b stores the computed value of y, but this value is
not significant: only the memory value that is output by Ry is being compared.
In this circuit these two values are identical. However, in a more complicated
example where memory can also be affected by other components, the expected
behavior would be to compare the memory value.

The buffer is closely related to another component, whichwe call a prophet.
A prophet generates a speculation, and stores that speculation in its memory.
It then waits for the arrival of the true value. If that value equals the speculation
the prophet reset its speculated memory, similar to a buffer that outputs a
value, and them becomes empty. If the arrived value is different than the spec-
ulation, then it means we had done a false speculation. A prophet blocks its
input port from firing with the true value, typically resulting in a deadlock.

Consider inserting a prophet p between the replicator after Ry and before
A of the comparator, as shown in the following circuit:

9

Wz

W�

Ry

Wy

A

B C

�

12

21

A

B

C

�

8

3

7

4

A

B

C�

D

E

=

>

b

p

13

The intended behavior of this circuit is now different: we speculate on the
value of y in our program, before we actually know the value of Ry. Suppose that
y < 13: then Wz fires with 4. Suppose that y ≥ 13: then Wz fires with 7. Both
actions could occur before Wy.

If y ≥ 13 was speculated, and some time later the actual value is read from
memory and Ry fires (here with 21), then we have a true speculation. Thus, we
have already performed computation (writing 7 to z), thereby gaining through-
put. Moreover, if y < 13 was speculated, and some time later the actual value
is read (again 21), then we have a false speculation. Thus, we must discard or
revert our computation, thereby losing throughput.

However, there is no guarantee that the value actually be read from memory:
the prophet allows blocking its input port indefinitely if the speculation differs
from the true value. We must enforce that eventually a flow from Ry to the input
of the prophet takes place, otherwise the components deadlock in the case of a
false speculation. We modify our circuit to add the constraint of progress, that
forces an inconsistency in case of a false speculation:

10

Wz

W�

Ry

Wy

A

B C

�

12

21

A

B

C

�

8

3

4

A

B

C�

D

E

=

>

b

p

7 13

The forcing component, called pull, acts as a suction pipe: adding this com-
ponent forbids, by specification, that these components enter a deadlock con-
figuration. However, addition of only a pull means that Ry and A always keep
firing, which is too strict. Thus, we additionally add a variable in between the
replicator and the pull, to indicate that Ry must fire at least once.

We explore this example in more depth by deconstructing each component
and understanding them individually. For that, we first require a language that
allows us to express compositions, interfaces and components.

11

This page is intentionally left blank.

12

Chapter 2

Language

We define a formal language for the construction of components. The formal
language works on three levels:

1. Compositions describe how individual components are wired together. We
refer to individuals by instance variables and their ports.

2. Interfaces describe the types and the names of boundary ports. We define
how to check the interface of a composition.

3. Components comprise layers of compositions of composites and primitives.
We have components bound to instance variables, we show how to sim-
plify components by substitution by flattening the layers, and how to check
whether a component is well-typed.

Our language is graphical, and was used in the earlier running example. This
work on syntax based on Reo is similar in purpose to Dokter’s textual Reo [33],
in which he allows user-defined component types. The crucial difference is the
explicit treatment of nodes in this work, whereas Dokter implicitly uses merger-
replicators nodes. Furthermore, we describe a mechanism for type checking
compositions and components, and simplification of components.

The theory described in this chapter was developed alongside a prototype
Java program that parses, normalizes and type checks compositions and compo-
nents. The developed prototype is not included with this thesis, since it likely is
incorrect, and incomplete, and thus not of high quality.

The design of the type system for checking components and compositions is
based on the λ µµ̃-calculus by Curien and Herbelin [29]. The notion of duality
of components and swapping input and output ports, is based on the work by
Downen and Ariola [34].

2.1 Compositions

We first introduce compositions and how to link components together. We con-
sider well-formedness of compositions and typed compositions. The motivation
for doing so is to structure our understanding of composition, and thus allow us
to do structural reasoning on compositions.

Let there be a set of data types. Data types are denoted α,β , . . ., instance
variables are denoted x,y,z, . . ., and port variables are denoted X ,Y,Z, . . .

13

Definition 1. A reference is as given by the following grammar:

p,q,r,s ::= x.Xα | Xα

where x is an instance variable, X is a port variable, and α a type annotation.
The type annotation α may be omitted if unambiguous or clear from context.

Let R denote the set of references. References are either qualified (x.X) or
unqualified (X). Intuitively, references allow us to point to a port: if we point to
a port of an instance, then it is a qualified reference; if we point to a boundary
port of a composite component, then it is an unqualified reference.

Definition 2. A composition is as given by the following grammar:

c,d,e ::= x | (c ‖ d) | (c)p
q

where x is an instance variable, (c ‖ d) a parallel composition, and (c)p
q an identi-

fication, such that the following laws hold:

(c ‖ c) = c

(c ‖ d) = (d ‖ c)

(c ‖ (d ‖ e)) = ((c ‖ d) ‖ e)

((c)p
q)

p
q = (c)p

q

((c)p
q)

r
s = ((c)r

s)
p
q

((c)p
q ‖ d) = ((c ‖ d))p

q

That is, parallel composition is idempotent, commutative, and associative; iden-
tification is idempotent, commutative, and distributes over parallel composition.

A composition is an instance variable, a parallel composition of two composi-
tions, or an identification of two references and a composition. The top reference
of an identification is called the source, and the bottom reference is called the
sink. Identification (c)p

q respects sources and sinks, that is (c)p
q 6= (c)q

p. We have
the notion of occurrence of instance variables (being atomic compositions) and
references (of identifications).

It should be noted that a source or a sink is an output or an input, depending
on ones perspective. Whenever a component is used, then its interface is flipped
(its inputs become outputs, or equivalently, its sources become sinks) allowing
one to connect a source to a sink.

z� z2
B

�

C

�

B C

� B

� �

C� � C

x

y2y�

w

B B

B B

14

Example 3. In the above figure we have the following references: x.A, x.B, x.C for
the router, y1.A, y1.B and y2.A, y2.B for the synchronous drains, z1.A, z1.B,
z1.C, and z2.A, z2.B, z2.C for the replicators, and w1.A, w1.B for the variable:
types are omitted. The inner part of the composition is: (x ‖ y1 ‖ y2 ‖ z1 ‖ z2 ‖
w) formed out of all components without their identifications. Since parallel
composition is associative we do not write parentheses. The composition with
all identifications is:

(· · ·(x ‖ y1 ‖ y2 ‖ z1 ‖ z2 ‖ w)A
x.A)

x.B
y1.A)

x.C
y2.A)

B
z1.A)

z1.B
y1.B

)z1.C
w.A)w.B

z2.A)
z2.B
y2.B

)z2.C
C

�

A composition can be simplified into a normal form. First, we push out all
identifications by distributivity to obtain a composition in which all parallel com-
positions are deep, and identifications are on the surface. Next, we associate all
nested parallel compositions to the right to form a list of instances. Next, we
sort the instances according to some order of instance variables, removing dupli-
cates. The surface identifications also form a list of pairs of references. We sort
this list according to the lexicographic orders of pairs of references, removing du-
plicates. The result has the shape (· · ·(((x ‖ (. . . ‖ z)))p

q) · · ·)r
s such that instances

are ordered, and references are lexicographically ordered. All compositions have
a unique normal form.

We typically work with compositions that are in normal form. We call the
inner part of a composition to be the parallel composition of instance variables
(x ‖ (. . . ‖ z)), and the outer part consists of all surrounding identifications.

A composition denotes a finite set of instance variables and a finite relation
of references. The set of instance variables of a composition precisely occur in
that composition, and similar for references. More precisely, x is represented by
the set {x} and the empty relation, (c ‖ d) is represented by the union of the
sets and relations of the representations of c and d, and (c)p

q is represented by
adding (p,q) to the relation of the representation of c. For example, (((x)y.Z

x.Y ‖
y)y.X

x.Z is represented by {x,y} and {(y.Z,x.Y),(y.X ,x.Z)}, and so its normal form is
((x ‖ y)y.X

x.Z)
y.Z
x.Y .

We want to prevent certain compositions: forbidding the identification of
ports of unknown instances, forbidding identifying references more than once,
and forbidding references to occur as both source and sink. This ensures that
every reference resolves to an instance that occurs in the composition, and that
identification is in some sense affine: a port is never referenced more than once.

Definition 4. A composition is well-formed if:
• every reference qualified by an instance has that instance occur in the com-

position,
• every reference is used at most once.

The last condition implies that a reference is used exclusively as a source or a
sink, and that a reference is not identified with itself. A well-formed composition
is easily recognized by looking at its normal form. The first condition is checked
by verifying that each qualified reference’s instance occurs in the sorted list of
instances deeper in the composition. The last condition is checked by verifying
that a reference never occurs twice in a row in either normal form.

15

An example of well-formed compositions is: (x)x.X
Y denotes the composition

of instance variable x of which its external port x.X is identified with the internal
port Y at the boundary of our composition.

Here are some negative examples. (y)x.Y
X is not well-formed because x does not

occur. ((y)y.Y
X)y.Y

Z is not well-formed because y.Y occurs twice. (y)X
X and ((y)X

Y)
Z
X

are not well-formed because X is both a source and sink.
A well-formed composition is verified by ensuring that every qualified refer-

ence has an instance that is contained in the set of instance variables, and that
the relation is a partial function (each element is related to at most one other),
injective (each related element is mapped to by a unique element), irreflexive
(no element is related to itself), and acyclic (no element is transitively related
to itself).

2.2 Interfaces

We still want to prevent more compositions: compositions must only identify
ports of the same type, and we want to keep track of the interface of a component
to resolve references against. Towards this, we first introduce interfaces.

Definition 5. An interface is a pair of two disjoint sets of references, denoted
〈p1, . . . , pn | q1, . . . ,qk〉. An unqualified interface is an interface consisting only
of unqualified references. A qualified interface is an interface consisting only of
qualified references.

The empty interface is denoted as 〈|〉. We define the following operations on
interfaces. Let X1, . . . ,Xn and Z1, . . . ,Zk be port variables. Given an unqualified
interface U = 〈X1, . . . ,Xn | Z1, . . . ,Zk〉, we may qualify it by an instance x, denoted
x.U , to mean the qualified interface 〈x.X1, . . . ,x.Xn | x.Z1, . . . ,x.Zk〉. By U⊥ we
denote the dual interface: U⊥ = 〈Z1, . . . ,Zk | X1, . . . ,Xn〉. The variables on the left-
hand side of the | in an interface are called input port variables and those on the
right-hand side are called output port variables. The dual of an interface swaps
input and output. We may implicitly coerce interfaces to a set of references,
being the union of the two disjoint sets of references the interface comprises.

We may also lift union to interfaces. Let ∆1,∆2,Θ1,Θ2 be sets of references.
Given two interfaces U = 〈∆1 | Θ1〉 and V = 〈∆2 | Θ2〉, by U ∪V we mean the
interface obtained by pairwise union of the two parts of the interfaces to form
〈∆1∪∆2 |Θ1∪Θ2〉.

Now we introduce typed compositions. Consider the typing judgment x :: U
of an instance variable x and unqualified interface U . A typed compositions c : U
is a well-formed composition c and an interface U . Let a typing context be a set
of typing judgments Γ. We define the relation ` between typing contexts and
typed compositions, as given by Figure 2.1.

Since atomic compositions are always fully qualified, the union of interfaces
never has overlapping names. As a side-condition to these rules, we assume that
for p,∆ it holds that p 6∈ ∆, and for Θ,q it holds that q 6∈ Θ. We have not written
type annotations in compositions for brevity: they are the same as the annotation
given in the interface.

Given a well-formed composition c. If there exists a typing context Γ and
interface U such that Γ ` c : U , then we say that c is a well-typed composition.
The intention of a well-typed composition is to ensure that references are used

16

Γ,x :: U ` x : x.U

Γ ` c : 〈∆ |Θ〉
Γ ` (c)X

Y : 〈Xα ,∆ |Θ,Y α〉
Γ ` c : 〈x.Xα ,∆ |Θ,y.Y α〉

Γ ` (c)x.X
y.Y : 〈∆ |Θ〉

Γ ` c : U Γ ` d : V

Γ ` (c ‖ d) : U ∪V

Γ ` c : 〈∆ |Θ,y.Y α〉
Γ ` (c)X

y.Y : 〈Xα ,∆ |Θ〉
Γ ` c : 〈x.Xα ,∆ |Θ〉

Γ ` (c)x.X
Y : 〈∆ |Θ,Y α〉

Figure 2.1: Typing rules for compositions.

linearly and that identification of two references are of the same type. We assume
that all compositions we work with in the sequel are well-typed (and thus well-
formed), unless stated otherwise.

z� z2
B

�

C

�

B C

� B

� �

C� � C

x

y2y�

w

B B

B B

Example 6. In the above figure, the interface of the router is 〈B,C | A〉, that
of the synchronous drain is 〈| A,B〉, that of the replicator is 〈B,C | A〉 and
that of the variable is 〈B | A〉. These interfaces are flipped because we have
used these components in a composition. In the composition (x ‖ y1), we refer
to x and y1 and thus take the qualified interfaces for x and y1: 〈x.B,x.C | x.A〉
and 〈| y1.A,y1.B〉, which composed are: 〈x.B,x.C | x.A,y1.A,y1.B〉. We can then
identify the output x.B and input y1.A, resulting in 〈x.C | x.A,y1.A〉. The rest of
the composition is then formed. Ultimately, we end up with 〈A | B,C〉 as interface
for the composition with all identifications.

2.3 Components

Next, we consider the construction of components. Our intention is that a com-
ponent is either a primitive component, or a composite component consisting of
primitive components. To do so, we consider the construction of components as
either a well-typed composition, or a binding of an instance variable to a prim-
itive component. We assume a given set of primitive components, where each
primitive component is denoted by name.

Definition 7. A component is as given by the following grammar:

C,D,E ::= c | new R | (let x =C in D)

17

where c is a well-typed composition (see Definition 4), new R is a primitive com-
ponent R, and let binds the instance variable x in D. We consider composite
components equal modulo renaming of bound instance variables.

Certain components contain redundancies. We simplify components accord-
ing to the following three rules, that rewrites the pattern on the left-hand side
of −→ to the right-hand side. The first rule removes bindings for non-occurring
instances:

(let x =C in D) −→ D (2.1)

with the side-condition that x does not occur in D, hence x is unused and the
binding can be eliminated. The second rule permutes bindings:

(let x = (let y =C in D) in E) −→ (let y =C in (let x = D in E)) (2.2)

with the side-condition that y does not occur in E, or if it does it is suitably
renamed: the nested let binding is pulled back to the outer level. The third rule
substitutes compositions:

(let x = c in C) −→ C[x.c/x][x] (2.3)

A substitution C[c/x] denotes standard substitution of each occurrence of an in-
stance variable x by the composition c. A composition c is qualified with instance
variable x, which is denoted x.c, by substituting every occurring unqualified ref-
erence X by x.X . A non-well-formed composition c is linked through the instance
variable x, by finding identifications with sink p and source x.X and sink x.X and
source q for each port X , removing these two identifications, and identifying p
and q in the resulting composition if p 6= q. We denote linking through of a non-
well-formed composition c as c[x]. Linking through is lifted to components C[x]
by replacing each occurring composition c by c[x].

Qualification and linking through preserves well-formed composition: given
a well-formed composition c bound to x, and given a well-formed composition d,
then the composition d[x.c/x][x] is well-formed. Clearly, substituting an instance
variable by a qualified composition makes a non-well-formed composition, as in
the example qualifying (y)A

B with x results in (y)x.A
x.B and its substitution of y in

(x)x.B
x.A results in the non-well-formed composition ((y)x.B

x.A)
x.A
x.B. By linking through,

we obtain (y)x.B
x.B or (y)x.A

x.A, both of which link through to y.

Lemma 8. Component rewriting using these rules terminates.

Proof. Wemeasure the number let bindings and the depth of left nested bindings,
and in all rules either one decreases.

Example 9. Take the term let x = ((y)y.X
A)B

y.Y in ((x)x.A
Z)Wx.B. We assume y is a

component with interface 〈X | Y 〉. What follows is that within the composition
of x, we link y.X and y.Y to the unqualified references A and B, where A is a
sink and B is a source. We qualify every unqualified reference by its instance
variable, substitute the composition for each occurrence of the bound instance
variable, and then resolve the identifications by linking them through. The first
step results in the qualification of references: ((y)y.X

A)B
y.Y becomes ((y)y.X

x.A)
x.B
y.Y . The

second step results in ((((y)y.X
x.A)

x.B
y.Y)

x.A
Z)Wx.B where x is replaced by ((y)y.X

x.A)
x.B
y.Y . The

18

Γ ` c : U U is unqualified
Γ ` c :: U ` new R :: U

Γ `C :: V ∆,x :: V⊥ ` D :: U
Γ,∆ ` let x =C in D :: U

Figure 2.2: Typing rules for composite components.

last step removes identifications by linking through: we link y.X to Z via x.A and
remove x.A to obtain (((y)x.B

y.Y)
y.X
Z)Wx.B, and we link y.Y to W via x.B and remove x.B

to obtain ((y)y.X
Z)Wy.Y . �

Once no simplification rule applies anymore, we obtain components in nor-
mal form. These components are either of the form of a primitive component,
new R for some primitive R, or a composite component, let x=new R1 in (. . .(let z=
new Rn in c) . . .), with zero or more bindings to primitives R1 up to Rn. The latter
is also written as let x = new R1, . . . ,z = new Rn in c.

Lemma 10. Every component has a unique normal form.

Proof. We apply the critical pair method to establish confluence. By confluence
and termination, we have unique normal forms. There are five critical pairs:

1. Rules 2.1 and 2.3: (let x= c in D) either discards x because it does not occur
in D, or substitutes and links through. If x does not occur in D, we have
D[x.c/x] = D and D[x] = D since substitution without occurrence leaves the
term untouched, and linking through without occurrence leaves the term
untouched for well-formed compositions.

2. Rules 2.2 and 2.2: (let x = (let y = (let z =C in D) in E) in F) is joined to
(let z =C in (let y = D in (let z = E in F)))

3. Rules 2.1 and 2.2: (let x = (let y =C in D) in E) reduces in one step to E if
x does not occur in E, or in three steps if both x and y do not occur in E.

4. Rules 2.2 and 2.1: (let x = (let y = C in D) in E) reduces in one step to
(let x = D in E) if y does not occur in D, or in two steps if y does not occur
in D and E.

5. Rules 2.2 and 2.3: (let x = (let y = c in D) in E) reduces in one step to
(let x = D[y.c/y][y] in E) and in two steps to the same term, since y is not
contained in E the same argument as for the first case applies that restricts
the effects of substitution and linking through only to the D subterm.

We now consider typing judgments and typing contexts of components. Let
U,V be unqualified interfaces, and C :: U a typing judgment, and let the typing
context Γ denote a set of typing judgments. We define a relation between typing
contexts and a single typing judgment of a composite component, denoted Γ `
C :: U , as given by Figure 2.2. We consider the rules from left to right:

1. Recall that the difference between c :: U and c : U is that the former judges
only unqualified interfaces, whereas the latter judges arbitrary interfaces.
Hence, for a composition to become a composite component, it is required
to have an unqualified interface. This is possible by identifying all qualified
references.

19

2. This is a family of rules, one rule for each primitive component R with
unqualified interface U . We admit this rule for each primitive component
together with U as its unqualified interface.

3. This rule shows that x can be bound in D. This dualizes the interface of C
and binds it to x in the context of component D: what we used to consider
an output for C, now is an input to D; and what we used to consider an in-
put toC, now is an output for D. By Γ,∆ we mean that Γ and ∆ are disjoint:
this ensures that an instance can be used in only a single composition.

A component C such that /0 `C is derivable is called a closed component.

Example 11. We now take a component from before and show how it is normal-
ized. The first things to fix are the primitive components, of router :: 〈A | B,C〉,
valve :: 〈A | B,C〉 and variable :: 〈A | B〉. The component valve is formed by com-
posing replicator :: 〈A | B,C〉 and drain :: 〈A,B |〉 as:

let x = new replicator, y = new drain in ((((x ‖ y)A
y.A)

B
x.A)

x.B
y.B)

x.C
C

this forms the following derivation:

` new replicator :: 〈A | B,C〉
` new drain :: 〈A,B |〉

...
x :: 〈B,C | A〉,y :: 〈| A,B〉 ` c :: 〈A | B,C〉

x :: 〈B,C | A〉 ` let y = new drain in c :: 〈A | B,C〉
` let x = new replicator, y = new drain in c :: 〈A | B,C〉

where c is our composition ((((x ‖ y)A
y.A)

B
x.A)

x.B
y.B)

x.C
C that can be checked to be well-

typed with the unqualified interface 〈A | B,C〉. Let C denote this closed com-
ponent. We can form the component of the controlled memory by reusing our
earlier component, as follows:

B

�

C

�

B C

� B

� �

CB B C

x

z2z�

w

let x = new router, z1 =C, z2 =C, y = new variable in

(· · ·(x ‖ z1 ‖ z2 ‖ y)A
x.A)

B
z1.B)

x.B
z1.A)

x.C
z2.A)

y.B
z2.B

)z1.C
y.A)z2.C

C

After normalization and renaming we obtain the component shown below:

20

z� z2
B

�

C

�

B C

� B

� �

C� � C

x

y2y�

w

B B

B B

let x = new router, y1 = new drain, z1 = new replicator,
y2 = new drain, z2 = new replicator, w = new variable in

(· · ·(w ‖ x ‖ y1 ‖ y2 ‖ z1 ‖ z2)
A
x.A)

B
z1.A)

w.B
z2.A)

x.B
y1.A)

x.C
y2.A)

z1.B
y1.B

)z1.C
w.A)z2.B

y2.B
)z2.C
C

21

This page is intentionally left blank.

22

Chapter 3

Foundation

We consider the formulation of constraints over time to specify the behavior of
components. These formulas are called coordination protocols. Every primitive
component is specified by its interface and its coordination protocol. Of a com-
posite component, we inductively construct its coordination protocol from the
structure of composition and the coordination protocols of its underlying primi-
tives.

To do so formally, in this chapter we describe a particular many-sorted logic
and its standard interpretations as data constraints on streams. This is useful,
since we can not only use the logical formalism to define the behavior of primitive
components, but also properties of components.

1. We first lay down the mathematical preliminaries required in the rest of
this chapter: the domains of data types and streams.

2. We define our many-sorted logic and introduce standard interpretations.
Satisfiability can be understood as finding sets of assignments of ports to
streams.

3. We specify the behavior of primitive components by coordination proto-
cols. We consequently lift component specifications for composite compo-
nents by induction on their construction.

4. We define coordination games as the interaction between environment and
component.

Our loigcal formalism is inspired by Dokter’s formal rule-based semantics [32].
He defines coordination protocols as relations of data streams. He defines a
modal logic equiped with stream constraints that are constructed using stream
head equality, stream derivatives, and modal operators. In our formalization, we
employ standard first-order logic to define coordination protocols. It seems that
this change does not result in the loss of any expressiveness.

3.1 Data Streams

Data types are algebraic structures. Streams are used to model the flow of data.
By N we denote the set of natural numbers 0,1,2,3, . . .

Let a data type be a structure (D,∗) where D is a carrier set and ∗ ∈ D is a
designated constant. We speak of data elements as those elements in D different
from ∗. Whenever we speak of elements or values, we mean data elements or ∗.

23

Intuitively, one may think of ∗ as standing for the absence of data, being a ‘null’
value. We assume equality of data types is decidable. We write α,β , . . . to denote
data types. As convention, we write a ∈ α to mean some element a of the carrier
set. The set N is a data type (N,0) where we take ∗= 0.

Let a stream be a function from natural numbers to some set. We denote
streams by the Greek letters σ ,τ, Intuitively, one thinks of streams as an
enumeration. Data streams are functions from naturals to data types, e.g. σ :
N→ α for some data type α. Alternatively, we may define streams by stream
differential equation. See [71, 70] for an elementary introduction.

A stream differential equation for some stream σ is given by its initial value
σ(0) and its stream derivative σ ′. The derivative itself is also a stream such that
σ ′(x) = σ(x+1). We have the repeated derivatives σ ′′, σ ′′′, and so on: we define
σ (0) = σ and σ (n+1) = (σ (n))′. We have that σ(n) = σ (n)(0). From an initial value
and stream derivative we construct the stream (σ(0),σ(1),σ(2), . . .).

For example, let Nat = {N,∗} be some data type where ∗= 0. The enumera-
tion (0,0,0, . . .), that repeats 0 forever is a stream. Given directly as a function,
σ(x) = 0 defines this stream. Given as a stream differential equation, σ(0) = 0
and σ ′ = σ also defines this stream.

There are more streams than natural numbers. The argument is a variation
of Cantor’s diagonalization argument that there exists more real numbers than
natural numbers. There are at least as many streams as there are natural num-
bers: let n a natural number, then we can construct the stream (n,∗, . . .), where
the first element is n, followed by ∗ repeated forever.

Suppose towards contradiction that there are as many natural numbers as
there are streams. We enumerate all streams in a table: let σ0 denote the first
stream, σ1 the second stream, and so on. Look at the diagonal and construct
a stream τ such that τ(x) = σx(x)+ 1. Stream τ differs from each enumerated
stream σx in at least one position, x. Thus it cannot be part of the enumeration.
This contradicts that there are as many natural numbers as streams.

Equality of streams is established by bisimilarity [15]. A relation R on two
streams is called a (stream) bisimulation if for all (σ ,τ) ∈ R,

σ(0) = τ(0) and (σ ′,τ ′) ∈ R.

Two streams σ ,τ are bisimilar if there exists a bisimulation relation R such that
(σ ,τ) ∈ R, and we write σ = τ.

3.2 Logical Formalism

We now consider a many-sorted first-order logic with equality. The general struc-
ture of this section follows much from [35]:

1. We define syntax: what we mean by signature, terms, and formulas.
2. We define semantics: what we mean by standard interpretation.
3. We define the notions of assignment, solution, satisfiability and validity.

What is different than usual is our treatment of streams, and quantification over
streams. The intention of our logical formalism is to be able to use tools such
as interactive theorem provers (e.g. Coq, Isabelle, or Lean) to implement our
semantics. Further implementation within these tools is out of the scope of this
thesis.

24

We first start with the definition of signatures. Signatures may contain more
non-logical symbols than those given here: we specify only the minimal require-
ments. This treatment conveys openness and extensibility of our formalism.

Definition 12. Σ = (S,F,P) is a signature consisting of the following data:
• S is a set of sorts, such that:

– for each data type α there is a distinct sort α ∈ S,
– for each data type α there is a distinct sort (N→ α) ∈ S.

• F is a set of function symbols, such that:
– for each data type α, ∗α ∈ F with arity 〈α〉,
– for each data value d ∈ α, dα ∈ F with arity 〈α〉,
– + ∈ F , − ∈ F , × ∈ F with arities 〈N〉, 〈N,N〉, and 〈N,N,N〉,
– for each data type α, atα ∈ F with arity 〈(N→ α),N,α〉,
– for each data type α, skipα ∈ F with arity 〈(N→ α),N,(N→ α)〉.

• P is a set of predicate symbols, such that:
– ⊥,> ∈ P with arity 〈〉,
– for each data type α, =α∈ P with arity 〈α,α〉,
– ≤∈ P with arity 〈N,N〉.

An arity is a list of sorts 〈s1, . . . ,sn〉 where s1, . . . ,sn ∈ S. Each function symbol has
an associated non-empty arity. Each predicate symbol has an associated arity.

Since N is a data type, we also have a distinct sort N∈ S. Any natural number
0,1,2,3, . . . can be taken as a constant. We now fix some signature Σ = (S,F,P).
The definitions for terms and formulas are not surprising. Each term is assigned
to a sort. We define terms inductively over all sorts simultaneously. Formulas are
also defined inductively.

Definition 13. Let s ∈ S be a sort. A term of sort s is formed by:
• a variable x of sort s is an atomic term of sort s denoted xs,
• if c ∈ F is a function symbol of arity 〈s〉, then c is an atomic term of sort s,
• if t1, . . . , tn are terms of sorts s1, . . . ,sn and f ∈ F is a function symbol of arity
〈s1, . . . ,sn,sn+1〉, then f (t1, . . . , tn) is a term of sort sn+1.

Definition 14. A first-order formula is:
• if p ∈ P is a predicate symbol of arity 〈〉, then p is an atomic formula,
• if t1, . . . , tn are terms of sort s1, . . . ,sn and p∈ P is a predicate symbol of arity
〈s1, . . . ,sn〉, then p(t1, . . . , tn) is an atomic formula,

• non-atomic formulas are formed with connectives ¬, ∧, ∨,→,
• non-atomic formulas are formed by quantifiers ∃xs,∀xs.

We define standard interpretations to fix the interpretation of the non-logical
symbols we have introduced in our signature.

Definition 15. A standard interpretationM of signature Σ = (S,F,P) consists of:
• a map of sorts to domains such that s ∈ S maps to domain sM, such that:

– αM is the carrier set of data type α,
– the sort (N→ α) ∈ S is mapped to data streams N→ α of data type

α.
• a map of function symbols to domain functions such that f ∈ F with arity
〈s1, . . . ,sn,sn+1〉 maps to a function fM : sM1 × ·· ·× sMn → sMn+1, and c ∈ F
with arity 〈s〉 maps to sM, such that:

– ∗Mα is the null value ∗ ∈ α,

25

– dM
α is the data value d ∈ α,

– +,−,× are interpreted as the arithmetical functions of plus, monus1

and times,
– atα is interpreted as a function atMα : (N → α)×N → α such that

atMα (σ)(n) = σ(n),
– skipα is interpreted as a function skipM

α : (N→α)×N→ (N→α) such
that skipM

α (σ)(n) = σ (n).
• a map of predicate symbols to domain relations such that p ∈ P with arity
〈s1, . . . ,sn〉 maps to a relation pM : sM1 ×·· ·× sMn , and p ∈ P with arity 〈〉
maps to propositions, such that:

– ⊥M never holds and >M always holds,
– =M

α is equality of values of data type α,
– ≤M is the relation of less than or equals between naturals.

LetM denote a fixed standard interpretation. Towards defining satisfiability
and validity, we define the notion of assignment. This is necessary, since not
every domain element has a corresponding term.

Definition 16. An assignment β is a map from variables to domain elements,
where variables xs are mapped to elements in sM.

Given the interpretation of function symbols in M, an assignment can be
extended to a map from terms to domain elements, defined inductively on the
structure of terms. Similarly, given the interpretation of predicate symbols inM,
an assignment can be extended to a map from formulas to propositions, defined
inductively on the structure of formulas, making use of the previously extended
assignment to a map from terms to domain elements.

The satisfiability of a formula φ is denoted β � φ and is defined to be equiv-
alent to the truth of φ interpreted as a proposition given assignment β . The
validity of a formula φ is denoted � φ and holds if and only if β � φ holds for all
assignments β .

Proposition 17. If β1,β2 are two assignments and β1(xs) = β2(xs) for all free vari-
ables xs in φ , then β1 � φ and β2 � φ .

An assignment that is restricted to map only the free variables of a formula
φ is called a solution for φ . We have a special class of formulas:

Definition 18. A coordination protocol is a first-order formula φ , where all free
variables xs of φ must be of sort s = (N→ α) for some α. These free variables are
also called the ports (of data type α) of φ .

Remark 19. We treat sort annotations implicitly, to prevent clutter. We also use
a more convenient notation for atα and skipα : let X be a port of sort (N→ α)
and t be a variable of sort N, then the term atα(X , t) is written as X(t) and the
term skipα(X , t) is written as X (t). We call such terms applications and derivations,
respectively. Additionally, we use t > s for ¬(t ≤ s), and s < t for t > s, and s = t
for s≤ t ∧ t ≤ s.

1Monus is minus for natural numbers by rounding negative numbers to 0.

26

3.3 Coordination Protocols

We employ coordination protocols to encode our intuition of the behavior of com-
ponents. Formally, coordination protocols are formulas as defined in last section.
The set of solutions of a coordination protocol is a set of tables of observations. It
was found that this idea has an origin in Kleene’s 1951 paper on representation
of events [53]. Informally, observations represent a consistent snapshot of the
data flowing through ports of a component, made by an independent observer.
Tables of such observations capture behavior of a component over time. A set
of tables of observations corresponds to accepting certain such behaviors and
rejecting others.

Definition 20. The coordination protocol φ induces a set L(φ) = {β | β � φ} of
solutions of φ .

A coordination protocol φ is called inconsistent it L(φ) is empty. Intuitively,
we consider the set L(φ) of solutions as a set of tables of observations. Consider
these examples:

Example 21. Let X and Y be ports of type Signal = {∗,0}. The coordination
protocols ∀t.X(t)= ∗ and ∀t.Y (t)= 0 have one free variable: X andY , respectively.
The sets of tables of observations are shown below. Both contain single solution.

{ t X

0 ∗
1 ∗
2 ∗
...

...

} { t Y

0 0
1 0
2 0
...

...

}

Another example is the coordination protocol ∀t.X(t) = ∗∨Y (t) = ∗ that has
two free variables: X and Y . Its set of tables of observations is shown below. This
set contains any solution X 7→ σ ,Y 7→ τ where σ and τ are data streams such that
σ(t) = ∗ or τ(t) = ∗ for any t ∈ N.

{ t X Y

0 ∗ ∗
1 ∗ ∗
2 ∗ ∗
...

...
...

,

t X Y

0 0 ∗
1 ∗ ∗
2 ∗ ∗
...

...
...

, . . .,

t X Y

0 ∗ 0
1 0 ∗
2 ∗ ∗
...

...
...

, . . .,

t X Y

0 0 ∗
1 ∗ 0
2 ∗ 0
...

...
...

, . . .

}

�

Consider two coordination protocols φ and ψ that do not have any free vari-
ables in common. The protocol L(φ) consists only of solutions of φ , and similar
for L(ψ) and solutions of ψ. The intersection of these two sets is empty, however
L(φ ∧ψ) is not empty. In L(φ ∧ψ), every solution in L(φ) is paired with every
solution in L(ψ) and glued together.

Example 22. The solutions of ∀t.X(t) = ∗ and ∀t.Y (t) = 0 can be glued together
to form the coordination protocol:

27

X Y Z

d d

X Y Z

e e

X Y Z

d d d

Figure 3.1: Intersection of frame conditions.

X M Z

∗

X M Z X M Z

∗d

d

∗ ∗d

d ∗

∗ dd

Figure 3.2: Three frame conditions that make up a buffer.

{ t X Y

0 ∗ 0
1 ∗ 0
2 ∗ 0
...

...
...

}

�

We illustrate our intuition using frame conditions.

Example 23. The frame conditions X(0) =Y (0) and Y (0) = Z(0). This condition
applies to only the first row. These two frame conditions are overlapped, they
restrict the allowed observations in the first element, as in Figure 3.1. The first
constraint allows any value to appear at Z in the first row. The second constraint
allows any value to appear at X at the first row. But the constraints combined
only allow elements that are equal to all X , Y , and Z. These constraints, however,
do not restrict any other value at other ports. �

If wewant a frame condition to persists over time, then it must constrain every
row. The intuition of universal quantification is to slide the frame condition over
all rows.

Example 24. In Figure 3.1, the first frame condition then is X(t) = Y (t) and
we universally quantify over time t, to obtain ∀t.X(t) = Y (t). The second has as
frame condition Y (t) = Z(t), and universally quantified it becomes ∀t.Y (t) = Z(t).
Hence, the first coordination protocol only has solutions for which at every time
X and Y have the same value; it does not restrict Z in any way. Similar for
the second coordination protocol. Conjunction of the two protocols, (∀t.X(t) =
Y (t))∧ (∀t.Y (t) = Z(t)), results in the constraint that all three ports, at all times,
must have the same value. �

Example 25. A frame condition that spansmultiple rows is the example in Figure
3.2. The condition ranges over two rows. The first frame condition specifies that:
if port X has some value d and M has no value and Z has no value, then d must be
in the next row of M. The intuition here is that M acts as a sort of memory, that
is updated by constraining its value in the next row. The second frame condition
specifies that memory is retained whenever there is no input or output. The third
frame condition specifies that the contents of memory is the same as at port Z

28

X M Z

∗ ∗

d

∗

∗ ∗

d∗ ∗

d∗ ∗

∗ ∗ d

∗

t

0

1

2

3

4

5

Figure 3.3: Example sequence of solutions, with constraints of a buffer.

and that the memory is cleared in the next row. We now obtain the coordination
protocol:

∀t.(Z(t) = ∗ ∧M(t) = ∗∧M(t +1) = X(t) ∨
X(t) = ∗∧Z(t) = ∗ ∧M(t) 6= ∗∧M(t +1) = M(t) ∨
X(t) = ∗∧Z(t) = M(t)∧M(t) 6= ∗∧M(t +1) = ∗)

We have the quantifier ∀t. on the outer level to ensure that for each row, one of
these three frame conditions applies. If we would take (∀t. . . .)∨(∀t. . . .)∨(∀t. . . .)
as coordination protocol, then we accept streams that have for all rows, either
only the first, only the second, or only the third frame condition, and that is not
our intended result.

A demonstration of how the three frame conditions apply to an arbitrary so-
lution is given in Figure 3.3. Here, we observe a pattern that we can directly
describe the relation between the port X and Z, using a variable-sized frame
condition. The frame conditions are given in Figure 3.4. These frame conditions
apply for each row and are specified by:

∀t.(Z(t) = ∗∧X(t) = ∗ ∨
(Z(t) = ∗∧∃ j.t < j∧X(j) = ∗∧Z(j) = X(t) ∧

∀i.t < i∧ i < j→ X(i) = ∗∧Z(i) = ∗) ∨
(X(t) = ∗∧∃ j. j < t ∧X(j) = Z(t)∧Z(j) = ∗ ∧

∀i. j < i∧ i < t→ X(i) = ∗∧Z(i) = ∗))

It means that for each row (at t), whenever X has value d, there must exists
some future row (at j) such that Z has the same value d. The values at both
ports that are intermediate between these two rows are required to be ∗. It
also means that for each row (at t), whenever Z has value d, there must exists a
previous row with the same value, and all intermediate rows are required to be
∗. Our frame condition is still sliding here: the condition that Z(t) = ∗∧X(t) = ∗
is applied for all rows that are intermediate between the element accepted by X
and then returned by Z. �

We now turn to primitive components and composite components. The main
point is to associate each primitive component to a coordination protocol. We
then map composite components to coordination protocols, by induction on the
construction of compositions.

Definition 26. A component specification φ(U) consists of the following data:

29

X Z

∗

X Z

∗ ∗

∗

d

d

∗ ∗ �

Figure 3.4: Alternative frame conditions that make up a buffer.

• an interface U = 〈X1, . . . ,Xn | Z1, . . . ,Zk〉,
• a coordination protocol φ .

The free variables of the coordination protocol φ are all ports assigned in solu-
tions; the interface marks which ports are not hidden. Without loss of generality,
we may assume that all free variables of φ are precisely the ports occurring inU:
all hidden variables are existentially quantified, and for a non-occurring port Y
we add a trivial clause ∀t.Y (t) = Y (t).

The semantics of a component specification is the semantics of the coordina-
tion protocol, L(φ) = {β | β � φ}where β are solutions that assign streams to the
ports occurring in U . We use the notation L(φ(U)) to indicate that φ and thus
L(φ) depend on U . We introduce two abbreviations, useful for writing formulas
that are indexed over interfaces:

Given an interface U = 〈X1 : α1, . . . ,Xn : αn | Z1 : αn+1, . . . ,Zk : αn+k〉. We write
∀~Y : U.φ as an abbreviation for the indexed quantification ∀Y α1

1 .∀Y α2
2∀Y αn+k

n+k .φ .
Here Yi are the bound variables, that correspond for 1≤ i≤ n to the input ports
and for n < i ≤ n + k to the output ports. A similar abbreviation is used for
∃~Y : U.φ . In the case U is empty, then ∀~Y : U.φ is > and ∀~Y : U.φ is ⊥. Simi-
larly, we write

∨
i∈U φ for an indexed disjunction and

∧
i∈U for an indexed con-

junction. Given a component specification φ(U) then by φ(~Y) within an in-
dexed quantification, we mean the simultaneous substitution of the free vari-
ables X1, . . .Xn,Z1, . . .Zk in φ by those of ~Y : namely the coordination protocol
φ [Y1/X1, . . . ,Yn/Xn,Yn+1/Z1, . . .Yn+k/Zk].

We lift the operations of compositions, namely parallel composition and iden-
tification, to component specifications. Given two components specifications
φ(U) andψ(V)whereU andV are disjoint. The parallel composition φ(U) ‖ψ(V)
is defined to be (φ ∧ψ)(U ∪V). Identification on component specification is de-
fined only for occurring ports. Let U = 〈A : α | B : α〉 ∪V be an interface with
at least two ports, an input port A and an output port B of the same data type.
Then (φ(U))A

B is defined to be (φ ∧∀t.A(t) = B(t))(V).
The component specification for composite components can be constructed

by induction on the structure of components as follows. For each primitive com-
ponent, we assume its interface and coordination protocol are a priori given. We
assume a composite component C is normalized, meaning it is a sequence of let
bindings to primitive components with a composition as deepest term. For each
let binding let x = new R in C, we substitute the component specification that
is known for R for the instance variable x in C. Ultimately we end up with a
composition of component specifications and the previous definition applies.

Example 27. Suppose we have the following primitive component specifications:
Drain 〈A,B |〉∀t.(A(t) = ∗↔ B(t) = ∗)
Replicator 〈A | B,C〉∀t.(A(t) = B(t)∧A(t) =C(t))
Router 〈A | B,C〉∀t.(A(t) = B(t)∧C(t) = ∗∨A(t) =C(t)∧B(t) = ∗)

30

Variable 〈A | B〉M(0) = ∗∧
∀t.(B(t) = ∗ ∧M(t) = ∗∧M(t +1) = A(t) ∨

A(t) = ∗∧B(t) = ∗ ∧M(t) 6= ∗∧M(t +1) = M(t) ∨
A(t) = ∗∧B(t) = M(t)∧M(t) 6= ∗∧M(t +1) = M(t) ∨
A(t) 6= ∗∧B(t) = ∗ ∧M(t) 6= ∗∧M(t +1) = A(t)
A(t) 6= ∗∧B(t) = M(t)∧M(t) 6= ∗∧M(t +1) = A(t))

We compose them into the following component:

z� z2
B

�

C

�

B C

� B

� �

C� � C

x

y2y�

w

B B

B B

Next, we qualify each reference by its instance variable, we take the con-
junction of all formulas, and add identifications. This results in the following
component:

〈A,B |C〉∀t.(y1.A(t) = ∗↔ y1.B(t) = ∗)∧
∀t.(y2.A(t) = ∗↔ y2.B(t) = ∗)∧
∀t.(z1.A(t) = z1.B(t)∧ z1.A(t) = z1.C(t))∧
∀t.(z2.A(t) = z2.B(t)∧ z2.A(t) = z2.C(t))∧
∀t.(x.A(t) = x.B(t)∧ x.C(t) = ∗∨ x.A(t) = x.C(t)∧ x.B(t) = ∗)∧
∀t.(w.B(t)= ∗ ∧w.M(t)= ∗ ∧w.M(t+1)=w.A(t) ∨

w.A(t)= ∗ ∧w.B(t)= ∗ ∧w.M(t) 6= ∗ ∧w.M(t+1)=w.M(t)∨
w.A(t)= ∗ ∧w.B(t)=w.M(t) ∧w.M(t) 6= ∗ ∧w.M(t+1)=w.M(t)∨
w.A(t) 6= ∗∧w.B(t) = ∗ ∧w.M(t) 6= ∗∧w.M(t +1) = w.A(t)
w.A(t) 6= ∗∧w.B(t) = w.M(t)∧w.M(t) 6= ∗∧w.M(t+1) = w.A(t))∧

w.M(0) = ∗∧
∀t.(A(t) = x.A(t))∧∀t.(B(t) = z1.A(t))∧∀t.(x.B(t) = y1.A(t))∧
∀t.(x.C(t) = y2.A(t))∧∀t.(y1.B(t) = z1.B(t))∧∀t.(y2.B(t) = z2.B(t))∧
∀t.(z1.C(t) = w.A(t))∧∀t.(w.B(t) = z2.A(t))∧∀t.(z2.C(t) =C(t))

Recall that all ports that do not occur in the interface 〈A,B |C〉 are implicitly
existentially quantified.

An important aspect of reasoning about coordination protocols is the notion
of ideal environment. Let φ(U) be a component specification. If φ(U) is satisfi-
able, it means there exists a non-empty L(φ) that consists of assignments of the
ports in U to data streams. If φ(U) is unsatisfiable, it means that L(φ) is empty
and thus its coordination protocol is inconsistent. Any solution is called valid
behavior of φ ; if no such valid behavior exists, then clearly L(φ) is empty.

Typically, we reason about a component specification in isolation, and as-
sume its environment is ideal. This means that whatever solution there exists,

31

the environment behaves accordingly. Over the course of composition with other
components, the environment may be restricted. We say that a component spec-
ification becomes inconsistent, if the composition of a coordination protocol and
some environment results in an inconsistent coordination protocol, that is, there
is no solution that satisfies for both the constraints of the environment and the
component specification.

We finally remark the difference between an inconsistent coordination pro-
tocol, e.g. ⊥, and the coordination protocol which contains an assignment to
ports consisting only of silent observations, e.g. ∀t.X(t) = ∗. The latter is valid
behavior, since there exists a solution, while the former is not, since there is no
solution that satisfies ⊥.

3.4 Coordination Games

The question we must ask ourselves is: who is in control of a port? The control
of information flow is a shared responsibility between the component and its
environment. Information flow is controlled by playing a coordination game, that
we define later. The coordination game resolves the constraints of components
with an environment that is out of the control of a component. Suppose the
environment initiates an inward flow, then the component may choose to, either,
block the inward flow as if it applies back pressure, or allow it. Similarly, if the
component initiates an inward flow, then the environment may choose to block
the inward flow or allow it. The same applies for outward flow.

The flow of information at a port is modeled by data streams. For each port
there is an associated data stream. The type of data that may flow through a
port is the data type of the stream. Each data type consists (at least) of a ‘null’
value ∗ that represents the absence of data. If at some time ∗ occurs in a data
stream, we mean to indicate that no information flows at this time.

As a component has an interface, consisting of ports we intend to observe
all simultaneously. Intuitively, we consider a snapshot of a component’s ports,
and call it an observation. If an observation contains only ∗, we call it a silent
observation. Conversely, if an observation contains one value that is not ∗, we
call it an actual observation. All information captured in the snapshots over time
is assumed to be consistent and continuous. A consistent snapshot abstracts the
ordering of information flow and is a faithful representation of what actually
happened. A trace of snapshots is continuous if it excludes the existence of hid-
den information flows not captured in snapshots over time.

We say that a port fires if there is an actual data element exchanged through
the port. We say a port is inhibited or blocked if no data element is exchanged
through the port: this is represented by the null value ∗ in the stream corre-
sponding to the port.

A useful way of thinking of a component and its ports is by considering a
tabulation of observations. For example, take any component with two ports,
X and Y . Here X is an input port, and Y is an output port. We observe it over
some period of time. In Table 3.1 we see four observations: the first observation
(at t = 0) has some data element d flows through port X . Since X is an input
port, the element d is supplied by the environment and deemed acceptable by
the component: the environment and component have completed a step of the
coordination game and the result is that the data element d is exchanged through

32

t X Y

0 d ∗
1 ∗ ∗
2 ∗ ∗
3 ∗ d

Table 3.1: Examples of observations of ports X and Y

port X . The last observation (at t = 3) has that the data element d, which is
the same element as previously, flows out of output port Y : again a step in the
coordination game is completed.

The notion of consistency here means that the environment and component
never get stuck in their coordination game. An environment and a component
become stuck whenever they present contradicting constraints on the flow of
data: e.g. the environment forces the inward flow at port X but the component
inhibits any inward flow at port X . The result is an inconsistency. In case of any
inconsistency, the behavior of the component is undefined: we say the compo-
nent is destroyed in case of inconsistency.

The notion of continuous heremeans that there is no hidden information flow.
For example, in Table 3.1, all information that flows in or out the component
between t = 0 and t = 3 is as shown. Between time t > 0 and t < 3, the table
reports no activity at either port, and thus we may assume that there was no
such activity even in between the time steps.

Component behavior is defined in terms of permissible traces of observations.
We model an observation by an assignment of ports. We then consider a trace
of observations, or a stream of observations. We define coordination games that
gives rise to these traces, and give examples of a game play of the previously
considered components.

Let β be an observation. An observation is an assignment from ports to data
values. Note that there is an essential difference between solutions and traces:
a solution is an assignment from ports to data streams, whereas a trace is a
stream of observations. Intuitively, from the perspective of infinite tables, a trace
consists of a stream of rows, where at each row we assign a value for each port.
A solution consists of multiple streams, one for each column, that are assigned
to ports. Clearly, the two are different representations of an equivalent table.

Definition 28. A game graph is a graph with configurations as vertices and arcs
as edges. A configuration is an arbitrary element of a set of configurations. There
is a designated initial configuration I. An arc between configurations is a tuple
(C,β ,C′), where C and C′ are configurations and β an assignment. A configu-
ration C is inconsistent if there is no C′ such that there is an arc from C to C′.
A path is a finite sequence of alternating configurations and assignments. Arcs

are denoted C
β→ C′, and paths are denoted C1

β1→ C2
β2→ C3 · · ·Cn−1

βn→ Cn. Two
paths follow if the last configuration of the first path is the first configuration
of the second path. A path starting with the initial configuration is a prefix. A
cycle is a path such that the first and last configurations are the same. Given a

cycle C1
β1→ ··· βn→ C1, we may unroll it by walking the cycle multiple times, e.g.

C1
β1→ ·· · βn→ C1

β1→ ·· · βn→ C1. A trace is a path formed by a prefix followed by a

33

cycle, or an infinite sequence of alternating configurations and assignments. We
have inclusion of a prefix in a trace: if the trace is finite, we must sufficiently
unroll the cycle of the trace until the length is larger than the given prefix and
then walking over both the given prefix and the trace with unrolled cycle; if the
trace is infinite, we can take it immediately. A prefix then is included in a trace
if, superimposing the prefix over the trace, each configuration and assignment
matches. A dead-end is a prefix that is not included in a trace. �

We assume our game graphs do not contain any junk, that is: every config-
uration is reachable from the initial configuration. The number of steps that a
configuration is reachable from the initial configuration is the round number. A
configuration may occur at multiple rounds.

Definition 29. A coordination game on a game graph is played by two players,
an environment and an machine. In each step, the environment provides a par-
tial assignment, by mapping all input ports. The machine must complete the
partial assignment to a solution, by mapping all output ports. The objective of
the machine is to avoid an inconsistent configuration. �

The environment is taken as an adversary, in the sense that its behavior is
unpredictable. A machine can avoid an inconsistent configuration by consider-
ing the dead-ends. If an environment never provides a partial assignment that
inevitably leads to an inconsistent configuration, we say the environment is ideal.

34

Chapter 4

Components

Now that we have a solid logical foundation, we may define component speci-
fications. These components are closely related to those in the Reo literature,
e.g. as found in [10, 23, 33, 49]. The components push, pull, consensus,
and prophet are not considered before in Reo. Moreover, the components we
consider here are not exhaustive: others exists.

The format we employ to define components is the following:

Component: name(parameters)
Interface: interface
Protocol: coordination protocol

The name signifies the name of the component defined. Parameters are meta-
variables that are data types α,β , . . . and (data) elements a,b, . . .: these variables
occur as placeholder in the definition. The interface 〈Inα

1 , . . . |Outβ

1 , . . .〉 specifies
the names of the stream variables and their type: all variables on the left act as
inputs, variables on the right act as outputs. The protocol is given as a coordi-
nation protocol where free stream variables are as designated by the component
definition (see Chapter 3). Free variables that are not in the interface are hidden
ports, typically used as memory.

When we refer to a component, we either refer to its definition without giving
any actual parameters, or we instantiate it by giving actual parameters: actual
data types and actual (data) elements.

A component definition describes how the coordination game is played by
the component defined. The elements flowing in input ports are determined by
an environment; the component’s protocol specifies when and what elements
are allowed. Similarly, elements flowing out of output ports are determined by
the component, as defined by its protocol.

Whenever we consider a particular stream of observations, we may illustrate
only a subsequence of the whole stream. This is done in the table format as seen
before. Tables only show a particular part of an acceptable stream: whatever
is omitted in the table is left undefined. We may use the meta-variables d,e . . .
standing for data elements, and ∗ standing for the absence data.

35

A

garbage��) blocked��)

A

arbitrary��)

AA

silent��)

A

pull��)

A

push��)

A

constant��; a)

a

Figure 4.1: Endpoints

4.1 Endpoints

We introduce unary primitive components: endpoints. An endpoint has a single
port that is either input or output. The endpoints introduced here are depicted
in Figure 4.1.

Component: garbage(α)
Interface: 〈Aα |〉
Protocol: ∀t.(A(t) = ∗∨A(t) 6= ∗)

A garbage can accept any data and throws it away. It is wasteful: any informa-
tion it accepts is destroyed. Every stream of observations is acceptable. During
the coordination game, a garbage accepts any constraint by the environment
on its input port. Its protocol is equivalent to >.

A silent never produces any output. The component accepts only streams
of observations when port A is always ∗. The coordination game is played by
enforcing the output not to fire: it is inconsistent if the environment forces any
outward data flow.

Component: silent(α)
Interface: 〈| Aα〉
Protocol: ∀t.(A(t) = ∗)

We have dual components, where input and output are swapped but the pro-
tocol the same. The dual of garbage is arbitrary, and the dual of silent is
blocked.

Component: arbitrary(α)
Interface: 〈| Aα〉
Protocol: ∀t.(A(t) = ∗∨A(t) 6= ∗)

An arbitrary has an output without constraints. The protocol is the same as that
of garbage by duality. However, it’s operation is different than garbage. Arbi-
trary is an oracle, and produces every possible element non-deterministically.
What is a possible output depends on the outcome of the coordination game.

Blocked is dual to silent, and thus have the same protocol: the component
accepts only streams of observations when port A is always ∗. A blocked restricts
its input to ensure it never produces anything: during the coordination game,
this constraint is shared with the environment. When the environment forces
any inward data flow, an inconsistency occurs.

36

A B

A B

A B

A BA B

A B

adrain��)

sync��)

lossy��)

spout��)drain��)

aspout��)

Figure 4.2: Channels

Component: blocked(α)
Interface: 〈Aα |〉
Protocol: ∀t.(A(t) = ∗)

These four components are together called the unit components. It turns out that
the components given here are units with respect to composition with nodes.

Component: push(α)
Interface: 〈| Aα〉
Protocol: ∀t.(∃s.(A(t + s) 6= ∗))

Component: pull(α)
Interface: 〈Aα |〉
Protocol: ∀t.(∃s.(A(t + s) 6= ∗))

The two components that force progress for its outputs and inputs are push and
pull, by always asserting that the port eventually fires. These components are
similar to garbage and arbitrary: push generates an arbitrary output; pull
accepts arbitrary input. These component are useful to introduce an inconsis-
tency in case of a deadlock.

Constants push a predefined value precisely once. These components are
useful when reasoning about specific elements and constructing testing environ-
ments.

Component: constant(α,a)
Interface: 〈| Aα〉
Protocol: ∃s.(∀t.(t < s∨ t > s→ A(t) = ∗)∧ (A(s) = a))

It is worthwhile to think of components that have multiple input ports or multiple
output ports. We nowwork in that direction by considering components with two
ports.

4.2 Channels

We introduce binary primitive channels: channels. A channel has two ports. We
distinguish three kinds of channels: channels with one input port and one output
port, channels with two input ports, and channels with two output ports. The
channels introduced here are depicted in Figure 4.2.

37

A B

d d

A B

d ∗

Table 4.1: Example observations of lossy

A synchronous channel (or sync) transports anything instantaneously
from its input port to its output port. A channel is self-dual: we swap its in-
put and output by reversing the arrow.

Component: sync(α)
Interface: 〈Aα | Bα〉
Protocol: ∀t.(A(t) = B(t))

A lossy synchronous channel (or lossy) either transports instantaneously,
or its input is lost in transit, non-deterministically. This component alone does
not guarantee that input arrives at its output.

Component: lossy(α)
Interface: 〈Aα | Bα〉
Protocol: ∀t.(A(t) = B(t)∨B(t) = ∗)

As an example, consider that the protocol for lossy accepts streams that could
contain either of the subsequences of streams shown in Table 4.1. The left ta-
ble shows that a data element d from input A is transported instantaneously to
output B. The right table shows that a data element d from input A is lost. Both
of these subsequences of behavior are acceptable, for any data element d. These
two cases correspond to the disjunction in the protocol of lossy. Note that the
lossy component defined here is non-deterministic but not context-sensitive, as
described by Jongmans and others in [52].

The former channels have one input port and one output port. In contrast,
the next channels have either two inputs or two outputs.

Synchronous drain (or drain) loses all its input with the purpose of syn-
chronization: either both input ports pass data instantaneously or both ports are
absent of data. Passing data need not be related.

Component: drain(α,β)
Interface: 〈Aα ,Bβ |〉
Protocol: ∀t.((A(t) = ∗∧B(t) = ∗)∨ (A(t) 6= ∗∧B(t) 6= ∗))

An asynchronous drain (or adrain) also loses all its input for the purpose of
synchronization. At most one input port passes data instantaneously. Passing
data is not related.

Synchronous drains and asynchronous drains could be implemented
by playing the coordination game as follows. For synchronous drain: if only
one input is ready to fire (the environment signals this to the component) it
becomes blocked until the other input is also ready to fire. This guarantees that
at one instant, both ports fire together. For asynchronous drain: if either input
is ready to fire, the component picks precisely one input to fire and blocks the
other one.

38

Component: adrain(α,β)
Interface: 〈Aα ,Bβ |〉
Protocol: ∀t.((A(t) 6= ∗→ B(t) = ∗)∧ (B(t) 6= ∗→ A(t) = ∗))

An asynchronous drain is not the dual of a synchronous drain because they
have different protocols.

Synchronous spout (or spout) has arbitrary outputs, but with the same
protocol as synchronous drain: it either generates two unrelated data ele-
ments at the same time or both ports are silent. Synchronous spout is the
dual of synchronous drain.

Component: spout(α,β)
Interface: 〈| Aα ,Bβ 〉
Protocol: ∀t.((A(t) = ∗∧B(t) = ∗)∨ (A(t) 6= ∗∧B(t) 6= ∗))

An asynchronous spout (or aspout) is the dual of an asynchronous drain:
it also generates data, but never at the same time at both ports.

Component: aspout(α,β)
Interface: 〈| Aα ,Bβ 〉
Protocol: ∀t.((A(t) 6= ∗→ B(t) = ∗)∧ (B(t) 6= ∗→ A(t) = ∗))

4.3 Buffers

A channel that deserves special attention is the buffer, which transports values
non-instantaneously. We consider a buffer, and three variants. These compo-
nents are depicted in Figure 4.3.

These components are stateful: the components have memory that is either
empty or full. Memory is a hidden port, that is, it is part of the observation
but it cannot be influenced by the environment. Components are completely
in control over memory. However, memory being a hidden port, we still have
stream variables in our protocol corresponding to them.

Component: buffer(α)
Interface: 〈Aα | Bα〉
Protocol: Mα(0) = ∗∧
∀t.((B(t) = ∗ ∧M(t) = ∗∧M(t +1) = A(t)) ∨

(A(t) = ∗∧B(t) = ∗ ∧M(t) 6= ∗∧M(t +1) = M(t)) ∨
(A(t) = ∗∧B(t) = M(t)∧M(t) 6= ∗∧M(t +1) = ∗))

Buffers transport data elements over time in a non-instantaneous way. One
only observes an output element if in the past it was put in.

The output of a buffermust remain silent until some input element passes to
memory. A buffer remembers its element indefinitely while the output remains
silent. A buffer destructively reads its memory when a data element is put out.
A buffer is asynchronous: never there is activity at both its input and output
ports. Additionally, the input port is only blocked when the buffer is full.

We illustrate the buffer in Table 4.2a: first the input port fires with d, while
the output port must block. The data element is stored in memory: as long as

39

A B

buffer��)

A B

variable��)

A B

prophet��)

Figure 4.3: Buffer, variable, prophet.

A M B

d ∗ ∗
∗ d ∗
∗ d d
∗ ∗ ∗
(a) buffer

A B

d ∗
∗ d
e ∗
∗ e

(b) buffer

A B

e ∗
d ∗
∗ d
∗ d

(c) variable

A B

∗ d
∗ ∗
d ∗

(d) prophet

Table 4.2: Example observations of buffer, variable and prophet.

the output does not fire, memory is retained. As long as the buffer is full, the
next input remains blocked. Then the output fires with d, the element stored
in memory, and the memory is cleared in the next observation. Looking just at
the input and output ports; we have Table 4.2b. Also see Table 3.1 for an earlier
example.

Lemma 30. Stream M of a buffer is uniquely determined by the streams A and B.

Proof. Given two streams A and B, and suppose there are two streams M and M′

such that there is some t where M(t) 6= M′(t), such that the coordination protocol
is satisfiable. We separate regions of streams M and M′ into three types: initial,
empty, full. The initial region is from t = 0 up to some time where the input fires
fires. Both streams must coincide, because the second rule applies here. The full
region is between the moment the input fires until the first moment the output
fires: again, both streams must coincide because of the second rule. The empty
region is between the moment the output fires until the first moment the input
fires: again, both streams must coincide because of the second rule. Thus there
does not exists any t in which M and M′ are different.

The first variant of buffer is the variable. It differs from a buffer in only
two respects: a variable’s input is not blocked when the buffer is full, and
memory is not read destructively.

We illustrate the variable in Table 4.2c: first the input fires with e. Then the
input fires d, which overwrites the previous memory. Then the output fires d but
it does not erase the memory. Hence, the next turn, the output port fires again
with d.

If a variable is full, any input element overwrites the existing value in mem-
ory. Additionally, if a variable is full, then it always remains full. If a variable
is full, both input and output port may fire together, but input is never instanta-
neously transported to its output. A variable can be built out of other primitive
components, as is done similar to [8]. The derivation given there is different,
since it does not allow input and output to fire together. Here, we do allow that
the input and output fire together.

40

Component: variable(α)
Interface: 〈Aα | Bα〉
Protocol: Mα(0) = ∗∧
∀t.((B(t) = ∗ ∧M(t) = ∗∧M(t +1) = A(t)) ∨

(A(t) = ∗∧B(t) = ∗ ∧M(t) 6= ∗∧M(t +1) = M(t)) ∨
(A(t) = ∗∧B(t) = M(t)∧M(t) 6= ∗∧M(t +1) = M(t)) ∨ (!)
(A(t) 6= ∗∧B(t) = ∗ ∧M(t) 6= ∗∧M(t +1) = A(t)) (!)
(A(t) 6= ∗∧B(t) = M(t)∧M(t) 6= ∗∧M(t +1) = A(t))) (!)

Differences in protocol with buffer are marked (!).
Finally, we consider the dual to buffer: a prophet. It has the same protocol

as the buffer, but input and outputs are swapped.

Component: prophet(α)
Interface: 〈Aα | Bα〉
Protocol: Mα(0) = ∗∧
∀t.((A(t) = ∗ ∧M(t) = ∗∧M(t +1) = B(t)) ∨

(B(t) = ∗∧A(t) = ∗ ∧M(t) 6= ∗∧M(t +1) = M(t)) ∨
(B(t) = ∗∧A(t) = M(t)∧M(t) 6= ∗∧M(t +1) = ∗))

Prophets first fire their output port by speculatively generating a data element.
The input port fires after the prophet hasmade a prediction, and only the output
which had predicted the input correctly is consistent—all other speculations that
are incorrect are inconsistent.

The reader may object, by arguing it is impossible that data travels back in
time, as it does with the prophet. The prophetmerely defines the protocol—in
practice, one could implement a prophet by speculative execution and back-
tracking if the wrong element was chosen.

Buffer and prophet are asynchronous, but variable is not synchronous
(input and outputmay not fire together) and not asynchronous (input and output
may fire together). Buffer and prophet are linear channels: every input is
output once and once only. A variable is not linear: an input element may
never appear as output because it may be overwritten, or an input element may
appear as output multiple times. Buffer and variable are causal channels, and
prophet is an acausal component.

4.4 Nodes

The last primitive components we consider are nodes. Nodes are ternary compo-
nents and have one input and two outputs, or two inputs and one output. Nodes
are used to graphically connect components (Figure 4.4).

Nodes are a generalization of channels to three endpoints. In the next sections
we explore further generalizations of synchronous channels into components
that consist of more than three ports.

The nodes we consider are instantaneous components: data elements move
between inputs and outputs without delay.

A replicator component transports instantaneously by duplicating data el-
ements from its input port to two output ports.

41

A

B

replicator
�)

C

A

B

merger
�)

C

A

B

consensus
�)

C A

B

router
�)

C

Figure 4.4: Nodes

Component: replicator(α)
Interface: 〈Aα | Bα ,Cα〉
Protocol: ∀t.(A(t) = B(t)∧A(t) =C(t))

A merger transports instantaneously at most one data element from one input
to its output, while the other input is blocked. If we analyze the input ports of
a merger in an ideal environment, we establish they must be asynchronous: if
both A and B fire at the same time, we have an inconsistency.

Component: merger(α)
Interface: 〈Aα ,Bα |Cα〉
Protocol: ∀t.((A(t) =C(t)∧B(t) = ∗)∨

(B(t) =C(t)∧A(t) = ∗))

We also have the duals of replicator and merger, where input and output are
swapped, similar to the duals of endpoints. A consensus requires two inputs to
always agree on all elements, and instantaneously transports the agreed element
to a single output.

Component: consensus(α)
Interface: 〈Aα ,Bα |Cα〉
Protocol: ∀t.(A(t) =C(t)∧B(t) =C(t))

A router transports an input element to exactly one output port.

Component: router(α)
Interface: 〈Aα | Bα ,Cα〉
Protocol: ∀t.((A(t) = B(t)∧C(t) = ∗)∨

(A(t) =C(t)∧B(t) = ∗))

We can also analyze linearity for nodes. If an input element appears to be dupli-
cated, or not output at all, the component is not linear.

Both merger and router are linear, since every input element occurs at ex-
actly one output. Both replicator and consensus are not linear. A replicator
duplicates its input element, and a consensus loses one of its input elements.

Overview

Table 4.3 is an overview of the components given here.

42

(I/O) term sync inst lin caus

garbage 1 (1/0) – c
silent 1 (0/1) t – 3 c
arbitrary 1 (0/1) –
blocked 1 (1/0) t – 3 c
pull 1 (1/0) p – 7 c
push 1 (0/1) p – 7

sync 2 (1/1) s 3 c
lossy 2 (1/1) c
drain 2 (2/0) s c
adrain 2 (2/0) a c
spout 2 (0/2) s
aspout 2 (0/2) a

buffer 2 (1/1) a 7 3 c
variable 2 (1/1) 7 c
prophet 2 (1/1) a 7 3 a

replicator 3 (1/2) s c
merger 3 (2/1) 3 c
consensus 3 (2/1) s c
router 3 (1/2) 3 c

Table 4.3: A non-exhaustive table of primitive components. The#-column shows
the components arity (number of ports), and the (I/O)-column shows the num-
bero of input ports and output ports. The term-column shows progress (p) or
termination (t). The sync-column shows synchronicity (s) or asynchronicity (a):
one-port components are trivial (–). The inst-column displays which primitives
are non-instantaneous (7). The lin-column displays the property of linearity
(3). The caus-column display the property of causality (c) or acausality (a).

43

This page is intentionally left blank.

44

Chapter 5

Properties

In [7], Arbab begins with the claim that “the most challenging aspect of con-
currency involves the study of interaction and its properties”. What are these
properties and why are these interesting in the first place? This deserves some
discussion.

Independence or delay insensitivity or stuttering of a component indicates
that it can cooperate with other components. A component is delay insensitive if
it can be ‘paused’ and ‘resumed’. A component is independent if, moreover, it has
no internal delay. Independence and delay insensitivity are essential for compo-
sition: consider, for example, combining a slow-running component with a fast-
running component. If these components need to communicate, then the fast-
running component needs to slow down to match the slow-running component.
Delay insensitivity captures the property that a component can be arbitrarily
slowed down. Independence moreover captures the property that a component
can be arbitrarily sped up. Delay insensitivity is preserved under composition.

The property of delay insensitivity or the stronger property of independence
are also known as stuttering, cf. Chapter 7.8 of Baier and Katoen’s Principles of
Model Checking [12]. This property is important for defining behavioral equiv-
alence of components, as understood by stuttering bisimulation relations. For
example, Manolios employs this property to show the correctness of pipelined
processors [62].

Another similar notion of equivalence is branching bisimulation with explicit
divergences [36]. In our formalism stuttering is modeled by a row of stars, also
called the silent observation. Independence can be understood by the closure
condition that states that a coordination protocol allows the insertion and re-
moval of such silent observations under certain conditions. Such conditions pre-
vent the possibility to insert all silent transitions after arbitrary prefixes, which
allows us to distinguish between acceptable behaviors which terminate from ac-
ceptable behaviors that do not: this makes divergence explicit.

Synchronous components model atomicity of their observations: either all
ports fire or none of them fires. A non-synchronous component violates this
constraint, e.g. allows two out of three ports firing at the same time. An asyn-
chronous component has at most one port firing exclusively and other ports do
not fire. These property are checked for a subset of ports of a component; the
synchronous property on sets is downward closed, i.e. if any set of ports is syn-
chronous, then so is any subset. Synchronicity is preserved under composition.

45

The distinction synchronous and asynchronous is useful to make in the con-
text of asynchronous processor architectures [42]. A synchronous circuit requires
a clock signal to propagate through the circuit, wasting energy and limiting
the clock speed to the slowest component that receives the same clock signal.
Even if a circuit consists of different synchronous regions, communicating asyn-
chronously among such regions is highly efficient [74].

Progress can be understood more clearly by studying multiple properties.
Productivitymeans that there is an eventual actual observation, and non-productive
means there are always silent observations. Moreover, we distinguish four prop-
erties: termination and deadlock, livelock and perpetuity.

An execution is terminating if every computation reaches a point where it
remains non-productive. An execution has a deadlock situation if there is a pos-
sibility of a computation that reaches a point where it remains non-productive.
An execution is perpetual if all computations always eventually leads back to the
initial configuration. An execution has a livelock situation if there exists a possi-
bility in which the computation no longer leads back to the initial configuration,
resulting in a defect. In terms of coordination game graphs, we can roughly
understand these four properties as depicted below:

���
���

: : :

I

�� ��

���
���

: : :
���

: : :

I

��

���
���

: : :

I

���
���

: : :
���

: : :

I

Termination Deadlock Perpetuity Livelock

Progress is a useful property to study to understand the productivity of a
system. Typically, we take deadlock and livelock as negative or useless properties
we wish to avoid, although sometimes it is useful to detect [26]. Termination is
useful to demonstrate that a machine always halts in a finite number of steps,
after having performed a particular task. Perpetual computation1 is useful to
demonstrate that a machine always has potential to perform all its behavior, and
thus does not contain any defects in which only limited parts of all its behavior
are performed.

Instantaneousness: a component is instantaneous (or stateless) if its obser-
vations all happen in a single instant. An instantaneous component does not
relate inputs and outputs over time. In terms of coordination game graphs, in-
stantaneous components have a single configuration. A component that is non-
instantaneous is called stateful. Instantaneousness is by definition preserved
under parallel composition and identification.

Instantaneous components do not require memory. This is useful when com-
posing instantaneous components: as an optimization, one could compress an
instantaneous component into a single component accepting equivalent behav-
ior. In addition, we make the case for modeling all components as instantaneous
components that dynamically reconfigure after taking a step, similar to dynamic

1“Perpetual computation” is by some [78] understood similar to “perpetual motion” and deemed
impossible. Here, by perpetual computation we mean the fact that a process can always reproduce
all its behavior, even though that process has effects on its environment.

46

reconfiguration using rewriting techniques by Krause and others [58], and graph
rewriting as done by Koehler and others [55]. It is also possible to consider a
distributed network that dynamically reconfigures itself, and communicates be-
havior as instantaneous constraints, as done by Proença and others [69]. Bruni
and others have focused on instantaneous components, and their algebraic for-
malism can model all instantaneous components [23].

Linearity means that input is never discarded or duplicated, and output
never appears out of nowhere. Linearity holds if every output of a component
can be traced back to precisely one of its inputs at a unique time, and every one
of its inputs is uniquely related to an output. Intuitively, duplication in space or
over time is prohibited.

Linearity is useful to consider, as it has a close connection to reversibility of
computation [77, 78]. In distributed computing, taking a snapshot of a system is
useful to detect a stable state, such as deadlock and termination [59]. Snapshots
can be used to revert back to a previous state, to perform distributed error recov-
ery [75]. However, algorithms for computing a snapshot incur space overhead
in storing previous configurations. If a component is linear, it admits a reversed
computation that allows for the recovery of an original configuration without
storing it explicitly. This property is useful to understand when considering op-
timizations of component compilers.

Causality: a causal component relates each of its outputs to inputs that have
happened in the past. Causality implies a flow from input to output. A non-
causal component violates this constraint, e.g. by generating arbitrary output
without any relation to its input. An acausal component has all its output in the
past related to future input, as if its output is a true prediction of what input
will happen in the future. Intuitively, acausality is related to speculative execu-
tion. Causality or acausality do not imply linearity: a component that duplicates
elements in space or over time is not linear but may still be causal or acausal.

Causality allows one to “understand” a system, in terms of how input leads to
an output, or how an output requires some input [22]. Bergner and others have
studied causality of components, and their information flow, in a similar way as
we have done here [21, 17]: introducing instances, components and connections
between interfaces. There, components are modeled using timed streams over
its instances, components, and connections: this is essentially different than our
work, where in our semantics we assume component instances to be static. They
define causality, or time-guardedness, in a similar way what we do here.

We thus now define and analyze these properties of coordination protocols.
We give examples and intuition for these properties based on examples that are
related to the running example introduced in Section 1.2.

The general approach is that of thesis, antithesis and synthesis. We study the
property positively and we study it negatively. This leads to a number of inter-
esting varieties of (opposing) properties. Properties could be combined to form
more complex properties. The properties listed here are by no means exhaustive.

47

5.1 Independence

Independence of a component is intuitively the possibility to stretch and shrink
observations over time. Delay insensitivity of a component is the possibility to
stretch observations over time, but not shrinking. Let φ(U) be a component
specification where φ is a coordination protocol and U an interface. Without
loss of generality, we assume all ports of U occur precisely as the free variables
of φ . From the semantic viewpoint, L(φ(U)) is the set of assignments of streams.
We can understand independence as a closure condition on L(φ(U)).

Let β ∈L(φ(U)) be a solution. Recall that a solution is a set of (infinite) tables
of observations, and if a solution is in L(φ(U)) we call it acceptable. We define
two operations on such tables: adding a row consisting of ∗ only, and removing
a row consisting of ∗ only. We restrict these operations to apply only to certain
rows: adding may happen only before a row that actually contains data, and
rows that contain nothing but ∗ may be removed only.

Let t be a row containing at least one non-∗ value. We insert a new row of all
∗ symbols before t. The result of adding this row in β is denoted add(β , t), which
itself is a solution. Adding a row add(β , t) is defined only if β (Y)(t) 6= ∗ for some
Y :

add(β , t)(X)(s) =

β (X)(s) if s < t
∗ if s = t
β (X)(s−1) if s > t

Let t be a row, for which all values are ∗. The result of removing a row in β

is denoted remove(β , t), defined only if β (Y)(t) = ∗ for all Y :

remove(β , t)(X)(s) =

{
β (X)(s) if s < t
β (X)(s+1) if s≥ t

Independence is the closure of insertion and removal of rows that consist only
of ∗. Delay-insensitivity is the closure of insertion of rows that consist only of ∗.
More precisely,

Definition 31. A component specification φ(U) is delay insensitive if for each
solution β ∈ L(φ(U)) and for each time t, we have that add(β , t) ∈ L(φ(U)) if
add(β , t) is defined. Moreover, a component specification φ(U) is independent if
φ(U) is delay insensitive and for each time t, remove(β , t) ∈ L(φ) if remove(β , t)
is defined.

Clearly, independence of a component specification implies delay insensitiv-
ity. The converse need not hold.

Lemma 32. Delay insensitivity is preserved by composition: if φ(U) is delay insen-
sitive and ψ(V) is delay insensitive then φ(U) ‖ ψ(V) is delay insensitive; if φ(U)
is delay insensitive and A ∈U is an input port and B ∈U is an output port then
(φ(U))A

B is delay insensitive.

Proof. The first implication holds. Suppose we have two delay insensitive com-
ponents. The resulting behavior is delay insensitive: we may insert rows with all
∗ before a rowwith data, by doing so in the two underlying tables, by considering
two cases:

48

In the first case, the row belowwhichwe insert consists of data at ports at both
U and V . In that case, we insert the row with ∗ in both composed components,
which is possible by assumption.

In the second case, the row below which we insert consists of data at ports at
only one of U or V . Suppose that data is observed at a port in U , and all ports in
V are silent. There are two possibilities: V has terminated and never fires again.
In that case, we can simply apply the assumption and insert a ∗ row for ports at
U . If V has not terminated, there exists some first row where there is data. We
apply the assumption for U at the current row; we apply the assumption for V at
the first row in the future where there is data.

The second implication holds. Suppose we have a delay insensitive compo-
nent with two ports A and B. Identification of ports removes solutions where A
and B are not equal; and identification removes both ports from the interface.
Hence any solution only ranges over the other ports. The set of solutions is closed
under addition; given a row where there is some data at a port, by assumption,
we can insert an all ∗ row before it. Since this assigns both A and B the same
value, this solution is not removed by identification.

Proposition 33. Independence is not preserved by composition.

Proof sketch. Consider a counter-example: the composition of two buffers,
where the output of one buffer is identified with the input of the other. Sup-
pose the the input port of the first buffer fires; it transports the data into the
next row and the output of the first buffer fires. Then the input of the second
buffer fires in the next row; it transports the data into the second next row.
Thus, in the composition, between the input event and a corresponding output
event, there is at least one row consisting only of ∗ that is necessary and cannot
be removed.

This proposition only holds due to the implicit hiding of identification. In-
dependence is preserved when identified ports are not hidden. To identify two
ports A and B without hiding, one can replicate the input port A using a repli-
cator, where one of its outputs is identified to B and the other output is exposed
as a non-hidden port. However, by our choice of composition to be either parallel
composition or identification, we do not have compositionality of independence.

49

Definition 34. Given a component specification φ(U), we define the properties:

delay(φ) := ∀~X : U.(φ(~X)→

∀t.(
∨
i∈U

Xi(t) 6= ∗→

∃~Y : U.(φ(~Y)∧
∧
i∈U

Yi(t) = ∗∧

∀s.(s < t→
∧
i∈U

Yi(s) = Xi(s))∧

∀s.(s > t→
∧
i∈U

Yi(s) = Xi(s−1))

)))

indep(φ) := delay(φ)∧∀~X : U.(φ(~X)→

∀t.(
∨
i∈U

Xi(t) = ∗→

∃~Y : U.(φ(~Y)∧

∀s.(s < t→
∧
i∈U

Yi(s) = Xi(s))∧

∀s.(s≥ t→
∧
i∈U

Yi(s) = Xi(s+1))

)))

Lemma 35. (Correctness) Let φ(U) be a component specification. φ(U) is delay
insensitive if and only if � delay(φ); φ(U) is independent if and only if � indep(φ).

Proof. Trivial and follows from definition. The proof below highlights the con-
nection between the formalism and the semantic definition.

(Delay insensitivity⇒) Assume φ(U) is delay insensitive. Then for each β ∈
L(φ) and time t, add(β , t) ∈ L(φ) if add(β , t) is defined. We show that delay(φ)
is valid: let ~X : U denote an arbitrary stream such that φ(~X), then ~X and β

correspond. Let t be a time such that there is some i ∈ U such that Xi fires.
Now add(β , t) is defined; take this stream as witness for ∃~Y . It is easily verified
that the three conditions correspond to the definition of add.

(Delay insensitivity ⇐) Assume that delay(φ) is valid. We show that φ(U)
is delay insensitive: let β ∈ L(φ) be an arbitrary solution, and t an arbitrary
time such that at least one port fires. To establish that add(β , t) ∈ L(φ), let ~X
correspond to the solution β , and ~Y be the witness. It is easily verified that the
witness ~Y corresponds to the solution add(β , t).

Independence is proved in a similar way.

A real-time clock is a component on which the value at time t depends on t.

Proposition 36. Delay insensitivity prevents real-time clocks.

Proof sketch. Suppose there exists a component that for each row t outputs pre-
cisely the row index t. Then it cannot be delay insensitive since we can no longer
stretch the table: the stretching implies that a clock value at row t now poten-
tially is observed at t + s for some s > 0. That contradicts that each observation
reflects the row index.

50

Corollary 37. Independence prevents real-time clocks.

Example 38. An example of two independent components are addition and
multiplication, as depicted below.

�

B

C� �

B

C�

12

21

3

print�r

x

y

Delay insensitivity means that multiplication can be delayed until addi-
tion is done, and vice versa. Independence moreover means that we do not
have necessary rows consisting only of ∗. As a concrete example, suppose that
these tables are acceptable for addition (on the left) and multiplication (on
the right):

t x.A x.B x.C

0 ∗ ∗ ∗
1 12 21 ∗
2 ∗ ∗ 33
3 ∗ ∗ ∗
...

...
...

...

t y.A y.B y.C

0 33 3 ∗
1 ∗ ∗ ∗
2 ∗ ∗ 99
3 ∗ ∗ ∗
...

...
...

...

For the first table, we know it also has another acceptable table because the
component is independent: remove row 0. For the second table, we remove rows
1 and 3 and insert a row before 0. Since x.C and y.A are identified, the tables
match up and we deduce the result of their composition:

t x.A x.B x.C

0 12 21 ∗
1 ∗ ∗ 33
2 ∗ ∗ ∗
...

...
...

...

t y.A y.B y.C

0 ∗ ∗ ∗
1 33 3 ∗
2 ∗ ∗ 99
...

...
...

...

Note how it is not possible to remove a row with data, since remove is not
defined for rows with data. Similarly, for the addition component, we cannot
insert a row before row 2, because add is not defined for a row without data. �

5.2 Synchronicity

An intuitive, and etymologically correct, metaphor for synchronization is the case
of two clocks that always tick at the same time (synchronous), or never at the
same time (asynchronous).

51

A synchronous component relates its ports such that either all port activity
happens at the same time, or nothing happens at all. An asynchronous compo-
nents also relates its ports by stating that port activity happens at only one port
at a time excluding at the same time any other port activity.

Synchronicity is defined on a set of ports P = {X1, . . . ,Xn} and component
specifications φ(U). P is synchronous if always either all ports fire, or no port
fires. This is expressed by the following formulas:

sync(P) := ∀t.(
∧
i∈P

Xi(t) = ∗∨
∧
i∈P

Xi(t) 6= ∗)

sync(φ) := ∀~X : U.(φ(~X)→ sync(~X))

A set of ports is non-synchronous if the synchronous property does not hold. For
example, a component with four ports where two ports fire together. The prop-
erty of being not synchronous and the property of asynchronous are different:
we have that P is asynchronous if always at most one port fires, or no ports fire.
This is expressed by the following formulas:

async(P) := ∀t.
∧
i∈P

(Xi(t) 6= ∗→
∧

j∈P\{i}
X j(t) = ∗)

async(φ) := ∀~X : U.(φ(~X)→ async(~X))

Each row corresponds to a port that fires and implies that all other ports must
be silent. We have that X1(t) = ∗∧ · · · ∧Xn(t) = ∗ is admitted, if all antecedents
are false.

Definition 39. A component specification φ(U) is synchronous if � sync(φ); it is
asynchronous if � async(φ).

Proposition 40. The singleton port set is both synchronous and asynchronous.

Proof. Let X be the single port. The formulas ∀t.(X(t) = ∗∨X(t) 6= ∗) for syn-
chronicity and ∀t.(X(t) 6= ∗→>) for asynchronicity are tautological.

Proposition 41. If a set of ports P is synchronous, then any of its non-empty subsets
is synchronous too.

Proof. The singleton set is already covered in Proposition 40. Now remove some
port X ∈ P, then we show that P\{X} is synchronous. Suppose a port in P\{X}
fires, then by synchronicity of P, all ports must fire, hence all ports in P\{X} also
fire.

Proposition 42. If a set of more than one port is both synchronous and asyn-
chronous, then its ports never fire.

Proof. Suppose one fires, then all others must fire (synchronous) and all others
must not fire (asynchronous): since this is inconsistent, never any port fires.

Example 43. By definition the synchronous drain and the asynchronous
drain are synchronous and asynchronous components, respectively. The syn-
chronous drain either fires both ports at the same time, or fires no port. The
asynchronous drain fires at most one port at a time. �

52

Example 44. An example of an asynchronous component is a buffer. A buffer
never fires both its input and output ports. �

Proposition 45. Let φ(U) and ψ(V) be two component specifications that are syn-
chronous, and let A ∈U and B ∈V . The component specification (φ(U) ‖ ψ(V))A

B is
synchronous.

Proof sketch. By linking two components using an identification, the resulting
coordination protocol shares at least one identical hidden port, since A(t) = B(t)
for all t, and A and B are no longer part of the interface after identification.
If a shared port fires, then all other ports of the composition must fire since
both components are synchronous. If another port of one of the components
fires, then the shared port must also fire since both components are synchronous,
which means all ports fire. Therefore, composition with identification preserves
synchronization.

Identification is essential, since otherwise the composed components may fire
independently: two synchronous components that are delay insensitive, for ex-
ample, are not synchronous if composed only in parallel. When one component
fires, the other component may be delayed and the set of ports of both compo-
nents are not all firing together.

A component can have different synchronization characteristics with respect
to different subsets of its ports.

Example 46. The router component has three ports. We study the synchro-
nization characteristics of each subset.

Component: router(α)
Interface: 〈Aα | Bα ,Cα〉
Protocol: ∀t.((A(t) = B(t)∧C(t) = ∗)∨

(A(t) =C(t)∧B(t) = ∗))

Intuitively, a router takes data from its input and brings it to exactly one output
port; the other output port remains silent. If we study {B,C}, then we see that
they never fire together; so {B,C} is asynchronous. If we study {A,B}, then the
firing of A does not necessarily imply the firing of B, since either B or C fires.
Hence {A,B} is neither synchronous, nor asynchronous. �

Example 47. The consensus and replicator components have three ports.
They have the same coordination protocol:

Component: replicator(α)
Interface: 〈Aα | Bα ,Cα〉
Protocol: ∀t.(A(t) = B(t)∧A(t) =C(t))

The set {A,B,C} is synchronous: if one port fires, then all other ports must fire.
The subsets {A,B}, {A,C}, and {B,C} are also synchronous, for the same reason.
The singleton sets are trivially synchronous. The replicator and consensus
in addition require that an observation must have the same data element for all
ports.

53

5.3 Deadlock and Livelock

We guide our definitions with terminology from concurrent and distributed sys-
tems [37]. Let φ(U) be a component specification. The set of solutions L(φ) is
called an execution. We call a single solution β ∈ L(φ) a computation.

We first define properties on a set of ports P= {X1, . . . ,Xn}, in a similar way as
done for the (a)synchronous property. Productivity, or non-productivity, speci-
fies that eventually an actual observation, or only silent observations, is accepted,
respectively. That P is productive or non-productive can be expressed by the fol-
lowing formulas:

prod(P) := ∃s.
∨

1≤i≤n

Xi(s) 6= ∗

¬prod(P) = ∀s.
∧

1≤i≤n

Xi(s) = ∗

A set of ports P is terminating if there is some point where the ports are non-
productive, i.e. there is some point from which onward the ports no longer fire.
This property is expressed by the following equivalent formulas:

term(P) := ∃t.∀s.
∧

1≤i≤n

Xi(t + s) = ∗

term(P) = ∃t.¬prod(P(t))

where we understand t to be the maximum number of steps the component can
take, after which the component becomes non-productive. Here P(t) is the set
{X (t)

1 , . . . ,X (t)
n }.

Conversely, the set of ports P has progress if always there is a point in which
one of its ports fire, i.e. at any time the ports are productive. This property is
expressed by the following equivalent formulas:

¬term(P) = ∀t.∃s.
∨

1≤i≤n

Xi(t + s) 6= ∗

¬term(P) = ∀t.prod(P(t))

A deadlock situation occurs if a computation eventually reaches a point where
it remains non-productive. Using our definition of terminating ports, we can
formulate the following more complex properties.

Definition 48. Let φ(U) be a component specification. We define the following:

deadlock(φ) := ∃~X : U.(φ(~X)∧ term(~X))

term(φ) := ∀~X : U.(φ(~X)→ term(~X))

¬term(φ) = ∃~X : U.(φ(~X)∧¬term(~X))

¬deadlock(φ) = ∀~X : U.(φ(~X)→¬term(~X))

We may understand these properties as follows. An execution:
• contains a deadlock if at least one computation is terminating,
• terminates if all computations are terminating,

54

• is non-terminating if at least one computation is not terminating,
• is deadlock-free if all computations are not terminating.

In this definition, we have implicitly converted the vector of variables ~X cor-
responding to the interface U to a set of ports {X1, . . . ,Xn}.

Example 49. A component that always progresses by definition is pull.

Component: pull(α)
Interface: 〈Aα |〉
Protocol: ∀t.(∃s.(A(t + s) 6= ∗))

�

The pull of a port has effect throughout a composition, similar to synchro-
nization. For example, pulling from a consensus output means pulling from
both its input ports, and pulling from a buffer output means pulling from its
input. However, progress is not necessarily compositional.

Example 50. We consider the following construction:

B

�

Here ports A and B are linked together using a consensus, which is linked to
a pull. Suppose that at some point A no longer can fire with data, i.e. ∃t.∀s.A(t+
s) = ∗. Then the output of the consensus also can no longer fire, since it is
synchronous with A. This results in a contradiction when considering also the
protocol of the pull, which states that always eventually it must fire. Hence, we
must have that both A and B are productive.

Now consider a more complicated construction, where x is our previous one:

B

��

B

x

We have two ports on the left; two replicators that combine with an asyn-
chronous drain; and then the previous construction of a consensus and a
pull. We already argued before that x.A and x.B of the previous construction
have to be productive. By the consensus x.A and x.B must fire together. How-
ever, we must also respect the property of asynchronous drain: either the top
fires, or the bottom fires, or both are silent. Thus, x.A and x.B are always silent.

55

This is in contradiction with pull, which prohibits such termination. Hence, this
component is inconsistent: it cannot exists. It does not have any valid behavior
at all, not even always silent behavior.

Observe that replacing the pull component above with a garbage results
in a component which has valid behavior: in this case, the component is always
silent (ports A and B never fire). This is different than not having any behavior
at all. �

Progress on a set of ports is different than progress on those ports individually.
Consider that progress on a set of ports allows one of those ports to always even-
tually fire, while the rest remain silent. This is not allowed when each port has
progress individually. However, progress on ports individually implies progress
on the set of those ports. If one port always eventually fires, then it is also the
case that a larger set containing that port still has progress.

We finally consider an alternative specification of the buffer by this coordi-
nation protocol as we have seen in Example 25:

∀t.((B(t) = ∗∧A(t) = ∗) ∨
(B(t) = ∗∧∃ j.(t < j∧A(j) = ∗∧B(j) = A(t) ∧

∀i.(t < i∧ i < j→ A(i) = ∗∧B(i) = ∗))) ∨ (5.1)

(A(t) = ∗∧∃ j.(j < t ∧A(j) = B(t)∧B(j) = ∗ ∧
∀i.(j < i∧ i < t→ A(i) = ∗∧B(i) = ∗))))

In here, we no longer have an occurrence of M, as in the standard definition in
Section 4.3, repeated below:

M(0) = ∗∧∀t.((B(t) = ∗ ∧M(t) = ∗∧M(t +1) = A(t)) ∨
(A(t) = ∗∧B(t) = ∗ ∧M(t) 6= ∗∧M(t +1) = M(t)) ∨ (5.2)

(A(t) = ∗∧B(t) = M(t)∧M(t) 6= ∗∧M(t +1) = ∗))

The alternative specification (5.1) and the standard specification (5.2) are dif-
ferent: this is demonstrated by the following counter-example.

Proposition 51. The two specifications of buffer are not equivalent.

Proof. We work towards contradiction. Assume the two specifications are equiv-
alent, then for all solutions, the original specification must be true if and only
if the alternative specification is true. We construct a scenario in which only a
single input event happens, but never any output event. Let A 7→ σ ,B 7→ τ,M 7→ γ

be a solution, where σ(0) 6= ∗ and σ(x) = ∗ for all x > 0, and τ(x) = ∗ for all x.
The stream γ is uniquely determined by σ and τ by Lemma 30, and is the stream
γ(0) = ∗ and γ(x) = σ(0) for all x > 0. We now have that the original specification
is true (the first row is verified by the first clause, all consecutive rows are verified
by the second clause). However, the alternative specification is false: at the first
row, we do have τ(0) = ∗, but there does not exists some j such that 0 < j and
τ(j) = σ(0), since there never is any output event. Contradiction.

The essential difference between the two specifications is that the alterna-
tive specification (5.1) has progress, whereas the standard specification (5.2)
contains deadlocks.

56

For defining perpetuity and livelock, we encode these as relations between
computations. However, it is still an open question what these characterizations
entail. Let P= {X1, . . . ,Xn} and Q= {Y1, . . . ,Yn} be two equally-sized sets of ports.
We define congruence:

cong(P,Q) := ∀t.(
∧

1≤i≤n

Xi(t) = Yi(t))

¬cong(P,Q) = ∃t.(
∨

1≤i≤n

Xi(t) 6= Yi(t))

to mean that ports P behave like ports Q. Conversely, non-congruence means
that ports P and ports Q may disagree at some point. It seems now possible to
formulate the proprety of a fully deterministic component:

det(φ) := ∃~X : U.(φ(~X)∧∀~Y : U.(φ(~Y)→ cong(~X ,~Y)))

that is, given some computation, if every computation is congruent with it, then
there can only be a single computation in the execution. And we define conver-
gence of P to Q:

conv(P,Q) := ∃s.(s > 0∧ cong(P(s),Q))

¬conv(P,Q) = ∀s.(s > 0→¬cong(P(s),Q))

to mean that eventually ports P behave like ports Q do initially. Intuitively, P
converges to Q if it is possible to shift P in time to obtain congruence with Q.
Non-convergence means that P cannot be shifted to obtain congruence with Q.
Here P(s) denotes the set P(s) = {X (s)

1 , . . . ,X (s)
n }. Now let φ(U) be a component

specification. We define the following:

perp(φ) := ∀~X : U.(φ(~X)→∀~Y : U.(φ(~Y)→ conv(~X ,~Y)))

cycl(φ) := ∀~X : U.(φ(~X)→ conv(~X ,~X))

acycl(φ) := ∀~X : U.(φ(~X)→¬conv(~X ,~X))

¬acycl(φ) = ∃~X : U.(φ(~X)∧ conv(~X ,~X))

¬cycl(φ) = ∃~X : U.(φ(~X)∧¬conv(~X ,~X))

¬perp(φ) = ∃~X : U.(φ(~X)∧∃~Y : U.(φ(~Y)∧¬conv(~X ,~Y)))

Intuitively, an execution:
• is perpetual, or livelock-free, if every computation eventually behaves like

every other computation,
• is cyclic if every computation eventually repeats itself from the start,
• is acyclic if every computation never repeats itself from the start,
• is non-acyclic if some computation eventually repeats itself from the start,
• is non-cyclic if some computation never repeats itself from the start,
• contains a livelock if some computation cannot eventually behave like some

other computation.

5.4 Instantaneousness

When data flow in and out of components, we intuitively transport such data. If
this movement happens without progression of time, then we say data is trans-
ported instantaneously. We also consider non-instantaneous components, which
may move data elements in time.

57

Definition 52. A component specification is instantaneous if its coordination
protocol is instantaneous. A coordination protocol is instantaneous if:

• it has the shape ∀t.φ such that φ is quantifier free and each occurrence of
a port X is in an application X(t),

• it is an existential quantification of some port X of an instantaneous coor-
dination protocol,

• it is a conjunction of two instantaneous coordination protocols.

A composition of two instantaneous components is also instantaneous. This
follows from parallel composition as a conjunction of the coordination protocols
of the two respective components. Identification is also instantaneous, since two
ports X and Y that are identified has ∃X .∃Y.(φ ∧∀t.(X(t) = Y (t))) as protocol,
where φ is the coordination protocol of the underlying composition.

Remark 53. The name stateless can be alternatively used for instantaneous. How-
ever, the name stateless is counter-intuitive from the perspective of coordination
protocols.

We have that there are certain equivalences of instantaneous components.
Two instantaneous coordination protocols φ(U) and ψ(U) are equivalent when-
ever they are logically equivalent:

equiv(φ ,ψ) := ∀~X : U.(φ(~X)→ ψ(~X))∧ (ψ(~X)→ φ(~X))

Example 54. With this notion of equivalence, we can demonstrate some basic
identities between instantaneous components:

�

�

B

�

B

�

B

B

All these composite components are equivalent to the synchronous chan-
nel between A and B. The equivalence is easily shown by composing the coor-
dination protocols, and simplification of the formula. We do it for the two cases
on the left, the others are analogous:

Let x be a replicator, y be a garbage, the composition has the protocol:

∃x.A.∃x.B.∃x.C.∃y.A.
∀t.(x.A(t) = x.B(t)∧ x.B(t) = x.C(t))∧

∀t.(y.A(t) = ∗∨ y.A(t) 6= ∗)∧
∀t.(x.A(t) = A(t))∧∀t.(x.B(t) = B(t))∧∀t.(x.C(t) = y.A(t))

that can be simplified to ∀t.(A(t) =B(t)∧(B(t) = ∗∨B(t) 6= ∗))which is equivalent
to ∀t.(A(t) = B(t)).

58

Let x be a router and y be blocked, the composition has the protocol:

∃x.A.∃x.B.∃x.C.∃y.A.
∀t.((x.A(t) = x.B(t)∧ x.C(t) = ∗)∨ (x.A(t) = x.C(t)∧ x.B(t) = ∗))∧

∀t.(y.A(t) = ∗)∧
∀t.(x.A(t) = A(t))∧∀t.(x.B(t) = B(t))∧∀t.(x.C(t) = y.A(t))

that can be simplified to ∀t.((A(t) = B(t)∧∗= ∗)∨ (A(t) = ∗∧B(t) = ∗)) which is
equivalent to ∀t.(A(t) = B(t)). �

It is still an open question how to formulate instantaneousness as a logical
property.

5.5 Linearity

A component is linear if all input data and output data are in a 1-to-1 correspon-
dence. Let φ(U) be a component specification, where U is an interface (of input
and output ports) and φ is a coordination protocol. From the semantic viewpoint,
L(φ(U)) is the set of assignments of streams. Given a solution β ∈ L(φ(U)), we
call the tuple of port, time and data element (X , t,d) an event at some port X
if β (X)(t) = d. An event (X , t,d) is an input event if X is an input port, and an
output event if X is an output port.

Definition 55. A component specification is linear if for each solution, a bijection
f between its input events and output events exists, such that f (X , t,d) = (Y,s,d),
that is, each mapped event has equal data.

Example 56. Examples of linear components with such interfaces are silent
and blocked. These components never fire and thus are instantaneous. �

Any component with interfaces such as 〈A,B, . . . |〉 (〈|A,B, . . .〉) cannot be both
linear and have progress. Progress guarantees that one of its ports eventually
fires. Since there are no output events (respectively input events), a bijection
cannot exist.

Linearity and progress are closely related. If a linear component has an in-
put event, there must exists an output event. However, linearity does not imply
progress, since an input event is not necessary and a solution without any events
is still linear.

Example 57. An example of a non-instantaneous linear component is a buffer
with input A and output B. We assume that the output port has progress, i.e.
always eventually fires. This can be demonstrated by the following table:

t A B

0 ∗ ∗
1 d ∗
2 ∗ ∗
3 ∗ d
4 e e
5 f ∗
...

...
...

59

Here, we have input event (A,1,d) corresponding to the output event (B,3,d).
The input event (A,4,e) corresponds to the output event (B,4,e). The input event
(A,5, f) corresponds to some output event. This output event must exists, be-
cause of the assumption that our output port has progress. �

Linearity does not imply that related input events and output events are or-
dered. For example, the following table is still considered linear, since (A,0,e) 7→
(B,2,e), (A,1,d) 7→ (B,0,d), and (A,2, f) 7→ (B,1, f):

t A B

0 e d
1 d f
2 f e
...

...
...

Non-linearity is not compositional. The non-linear arbitrary component
(that generates arbitrary output) composed with one of the inputs of the non-
linear consensus component is equivalent to a synchronous channel, which
is linear.

It is still an open question how to formulate linearity as a logical property.

5.6 Causality

Causality is defined by the same technique as how we defined linearity. Intu-
itively, a component specification is causal if all output data is related to some
input data that occurs in the past.

Definition 58. A solution is causal if for every output event (X , t,d), an input
event (Y,s,d) exists such that s ≤ t. A component specification is causal if every
solution is causal.

In contrast to linearity, a future output event can be related to multiple past
input events. A linear component is not necessarily causal; in case of a linear
component, an output event may be related to a future input event.

A component 〈|A,B, . . .〉 cannot be both causal and have progress. By progress,
eventually an output event must occur. However since there are no input ports,
there does not exist an input event that can be related to it. Moreover, a compo-
nent 〈A,B, . . . |〉 is trivially causal since there are no output events.

Definition 59. A solution is acausal if for every output event (X , t,d), an input
event (Y,s,d) exists such that s≥ t. A component specification is acausal if every
solution is acausal.

Non-causality and acausality are different, similar to how non-synchronicity
and asynchronicity are different.

Finally, we present an example of how acausality captures our understanding
of speculative execution.

Example 60. Consider the essential part of our running example on page 1.2,
depicted here below:

60

� B

We have two ports: A and B, with a prophet and a replicator to a pull
in between. The intention of this part of the protocol is as follows. Before it is
known what the actual value of A will be, we can already speculate on it. Thus,
for B there is an output event (B, t,d). Then, suppose the actual value for A is
known. If this value is different from the speculated value, then A will not fire
and remain silent instead. However, the pull requires A to eventually fire: it
is inconsistent if it never fires. Thus, the only consistent behavior that remains
is when the output event (B, t,d) corresponds to an input event (A,s,d), where
s≥ t. By the pull component, there is always progress on both A and B. �

The intuition behind an acausal component such as the prophet is that it
specifies prediction of future events. In reality, where we may not know the
future events yet. We could implement prophecies using speculative execution.

In a speculative execution, the predicted value can either be a true specu-
lation or a false speculation. If it is a true speculation, it means the future is
correctly predicted: the future input event (Y,s,d) corresponds to the past out-
put event (X , t,d). If the predicted value is a false speculation, meaning there is
no future event (Y,s,d) that corresponds to the past output event (X , t,d), then
we are in an inconsistent configuration due to the pull component.

An implementation of a prophet needs in case of a false speculation to back-
track, undoing the current computation until a previous consistent configuration
is reached. With the knowledge of the future from the inconsistent branch, the
branch prediction function can now choose to avoid the branch which is known
to be inconsistent.

If we do not force an eventual input of the prophet, then there is always
a consistent behavior by blocking. Even in the case of a false speculation, the
input never fires any other data that does not correspond with the (arbitrary)
prediction. Intuitively, this amounts to a self-fulfilling prophecy: the component
holds on to the false speculation and blocks any future attempt to input the actual
value. This leads to a non-productive outcome.

It is still an open question how to formulate causality and acausality as a
logical property.

61

This page is intentionally left blank.

62

Chapter 6

Conclusion

In this thesis, we have seen the establishment of a logical formalism for defin-
ing specifications of the behavior of components. We have studied some impor-
tant properties for understanding speculative execution, in particular concerning
prophecies. The logical formalism allows for formulation of the specification of
primitive components, and by the syntax of our typed coordination language we
can derive specifications of composite components.

We have seen how coordination games can be used to understand how coor-
dination protocols model an interaction between an environment and a compo-
nent. We gave an overview of components and we have formalized the properties
of delay insensitivity, independence, synchronicity and asynchronicity, progress and
termination, deadlock-freedom and livelock-freedom, instantaneousness, linearity,
and causality. Most properties are formulated using our logical formalism.

This thesis is a contribution to the logical foundations of concurrent and dis-
tributed systems, and the logical foundations of Reo in particular, for the fol-
lowing reason: the logical formalism presented in this thesis intuitively captures
what we mean by executions and computations. Components specify an ex-
ecution by constraining the permissible computations. A coordination protocol
denotes an execution; its solutions correspond to computations. Properties of co-
ordination protocols can be determined by considering their formalism in which
a placeholder is substituted for the coordination protocol for which the property
should hold. This allows one to reason about the validity of such properties.

We have seen that some properties are compositional, such as synchronicity.
Other properties are not compositional, such as independence. We have made
precise what we mean by compositionality, namely, the property is preserved
by parallel composition and by identification. In addition, we have recovered the
possibility to derive algebraic identities between instantaneous components.

63

6.1 Summary

This thesis can be summarized in the following key points.
Atomic actions describe the fact that a single event happens at a particular

instant. A sequence of actions forms a computation, and interleaving is typically
used to understand concurrent executions. We have studied a better model,
where we take observations instead of actions as the basis of forming computa-
tions. Observations are modeled by a set of (synchronous) actions that happen
simultaneously. By formulating constraints, we can precisely describe which ob-
servations are allowed. These constraints can be composed more easily than the
interleaving of atomic actions.

We have seen components, as they are formed from primitives to composites.
We understand components as binding instance variables; these bindings can
be flattened by a normalization procedure. By a well-formedness condition and
employing a type system, we ensure that we only work with compositions and
components in which ports are linked correctly.

We studied progress, and made a clear distinction between termination and
deadlock by means of silent and actual observations. We have also formulated
properties for deadlock-freedom and livelock-freedom. The validity of these prop-
erties are with respect to a coordination protocol, that specifies the behavior of a
component. A coordination game allows us to see coordination protocols as an
interaction between environment and component.

We have studied and explained speculations and how we understand false
speculations and true speculations. False speculations occur in speculative com-
putations, that eventually lead to an inconsistent configuration. We have seen
how a prophet can be used to model a speculative execution. We have also seen
that it is necessary to impose a progress condition, using a pull component, to
prevent prophets to deadlock in case of false speculations.

6.2 Related Work

In [60], Li and Sun formalize Reo in the Coq theorem prover. They formalize
circuits using data packets, which are either pending or delivered. They employ
a similar technique in modeling nodes as data streams, where data is either a
natural number or empty. Implicitly, they prove independence of an alternator
component, by showing that appending empty data packets does not violate the
specified behavior.

The graphical notation introduced here is similar to, and inspired by, string
diagrams, cf. Selinger’s survey on string diagrams [72]. Bruni and others have
developed algebraic techniques for stateless Reo components also based on string
diagrams [23]. The design of the type system for checking components and
compositions is based on the λ µµ̃-calculus by Curien and Herbelin [29]. The
notion of duality of components and swapping input and output ports, is based
on the work by Downen and Ariola [34].

In our thesis, we have left out any discussion or reference to constraint au-
tomata, to avoid any confusion that might arise between coordination games
and constraint automata. Constraint automata also give a semantics to Reo
[10]. Jongmans has extended this semantics to constraint automata with mem-
ory [49]. These constraint automata with memory still separate data constraints

64

from synchronization constraints. Data and synchronization are combined, by
introducing ∗, and can captured by a single constraint. Automata could subse-
quently be simplified to a single state, by capturing its state as a memory value.
The next insight was to model memory variables by streams [32]. A first-order
logic in which constraints on streams can be directly expressed was found, and
presented in this thesis.

Reo is very closely related to process algebra (see e.g. [38] for an introduc-
tion), with an important and profound difference: process algebras are action-
based, Reo is interaction-based. The reasons why process algebra needs proof
methodology [39], may also apply to Reo: realistic systems exhibit models that
are too large to deal with state-based techniques. Additionally, there are many
impossibility results in distributed and concurrent systems, but there is not a
single general theory in which we can proof such results.

Reo is related to component-based modeling. Numerous models are pro-
posed for component-based modeling, e.g. separating component from connec-
tor [3], a calculus based on asynchronous π-calculus [65]. However, as Gössler
mentions, the question of properties of component-based systems have not been
studied systematically [43]. In this thesis, we have set out to define such a set of
properties, thereby contributing to this question.

Vereofy is a model checking tool for analyzing Reo circuits [11]. It accepts
two input languages: one for construction of compositions, and one for defining
constraint automata. The model checker then allows verification of temporal
properties expressed in linear temporal logic (LTL) and computational tree logic
(CTL).

The idea of formalizing the behavior of a component in a first-order logic is
not new [21]. Broy gives a formalism that is similar to the one presented in this
thesis [20], that allows for the equational specification of components by using
predicates. The behavior of components are represented by stream processing
functions, that map a tuple of streams correspond to input ports to a tuple of
streams corresponding to output ports. A component is defined by the set of ac-
ceptable such behaviors; similar to our interpretation of coordination protocols.
Broy defines an algebra for composition, in a similar way as we have done: C ‖C
for parallel composition, µ

y
x for so-called feedback of channels that is comparable

to our identification of ports, and ρx
y for renaming channel names. He defines

the predicate interpretation of a composition in a very similar way as what we
have done: a parallel composition takes the conjunction of the specifications of
two components, and specifies that the shared channels must be identical.

The notion of a prophecy is well known. In 1986, Dijkstra explicitly forbids
“clairvoyance” [31], being the property of being able to receive messages before
they are sent, when discussing the distributed snapshot algorithm of Chandy
and Lamport [25]. Prophecy is also known as possibility, and used in the proof
of Herlihy and Wing for techniques showing linearizability of concurrent objects
[45]. They refer to the paper of Abadi and Lamport of 1988 [1], whom claim
“as far as we know, prophecy variables are new”.

65

Bibliography

[1] Martín Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, 1991.

[2] Samson Abramsky. Two puzzles about computation. Unpublished paper,
2014.

[3] Robert Allen and David Garlan. A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology, 6(3):213–
249, July 1997.

[4] Anonymous. Performance considerations for L1 terminal fault. https://
access.redhat.com/security/vulnerabilities/L1TF-perf.
(Accessed 24-Aug-2018).

[5] Farhad Arbab. What do you mean, coordination? Bulletin of the Dutch
Association for Theoretical Computer Science (NVTI), 19, 1998.

[6] Farhad Arbab. Abstract behavior types: a foundationmodel for components
and their composition. Science of Computer Programming, 55(1):3 – 52,
2005. Formal Methods for Components and Objects: Pragmatic aspects
and applications.

[7] Farhad Arbab. Elements of Interaction. In Complex Systems Design & Man-
agement, pages 1–28. Springer, 2010.

[8] Farhad Arbab. Puff, the magic protocol. In Formal Modeling: Actors, Open
Systems, Biological Systems, pages 169–206. Springer, 2011.

[9] Farhad Arbab. Proper protocol. In Theory and Practice of Formal Methods,
pages 65–87. Springer, 2016.

[10] Christel Baier et al. Modeling component connectors in Reo by constraint
automata. Science of Computer Programming, 61(2):75–113, 2006.

[11] Christel Baier et al. Formal verification for components and connectors. In
International Symposium on Formal Methods for Components and Objects,
pages 82–101. Springer, 2008.

[12] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
press, 2008.

[13] Rachel Bailey. A Comparative Study of Algorithms for Solving Büchi Games.
MSc dissertation, University of Oxford, 2010.

66

https://access.redhat.com/security/vulnerabilities/L1TF-perf
https://access.redhat.com/security/vulnerabilities/L1TF-perf

[14] Bruno Barras et al. The Coq proof assistant reference manual. PhD thesis,
INRIA, 1997.

[15] Henning Basold et al. Newton Series, Coinductively. In International Collo-
quium on Theoretical Aspects of Computing, pages 91–109. Springer, 2015.

[16] Twan Basten. Branching bisimilarity is an equivalence indeed! Information
Processing Letters, 58(3):141–147, 1996.

[17] Klaus Bergner et al. A Formal Model for Componentware. In Formale
Beschreibungstechniken für verteilte Systeme, pages 17–26, 1999.

[18] Anasua Bhowmik and Manoj Franklin. A general compiler framework for
speculative multithreading. In Proceedings of the 14th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, pages 99–108. ACM, 2002.

[19] Ana Bove et al. A brief overview of Agda—a functional language with
dependent types. In International Conference on Theorem Proving in Higher
Order Logics, pages 73–78. Springer, 2009.

[20] Manfred Broy. Algebraic specification of reactive systems. Theoretical Com-
puter Science, 239(1):3 – 40, 2000.

[21] Manfred Broy. Time, abstraction, causality and modularity in interactive
systems. Electronic Notes in Theoretical Computer Science, 108:3–9, 2004.

[22] Manfred Broy. Relating time and causality in interactive distributed sys-
tems. Engineering Methods and Tools for Software Safety and Security,
22:75, 2009.

[23] Roberto Bruni, Ivan Lanese, and UgoMontanari. A basic algebra of stateless
connectors. Theoretical Computer Science, 366(1):98 – 120, 2006.

[24] Roberto Bruni and Ugo Montanari. Zero-safe nets, or transition synchro-
nization made simple. Electronic Notes in Theoretical Computer Science,
7:55–74, 1997.

[25] K.M. Chandy and Leslie Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer Sys-
tems, 3(1):63–75, 1985.

[26] K.M. Chandy, Jayadev Misra, and Laura M. Haas. Distributed deadlock
detection. ACM Transactions on Computer Systems, 1(2):144–156, 1983.

[27] Dave Clarke. Coordination: Reo, Nets, and Logic. In Formal Methods for
Components and Objects, pages 226–256. Springer, 2008.

[28] Ernie Cohen. Separation and reduction. In International Conference on
Mathematics of Program Construction, pages 45–59. Springer, 2000.

[29] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In
Proceedings of the 5th ACM International Conference on Functional Program-
ming, volume 35, pages 233–243. ACM, 2000.

67

[30] Leonardo deMoura et al. The Lean theorem prover (system description). In
International Conference on Automated Deduction, pages 378–388. Springer,
2015.

[31] Edsger W. Dijkstra. The distributed snapshot of K.M. Chandy and L. Lam-
port. In Control Flow and Data Flow: Concepts of Distributed Programming,
pages 513–517. Springer, 1986.

[32] Kasper Dokter and Farhad Arbab. Rule-based form for stream constraints.
In International Conference on Coordination Languages and Models, pages
142–161. Springer, 2018.

[33] Kasper Dokter and Farhad Arbab. Treo: textual syntax of Reo connectors.
Proceedings of 1st International Workshop on Methods and Tools for Rigorous
System Design, 2018.

[34] Paul Downen and Zena M. Ariola. The duality of construction. In Euro-
pean Symposium on Programming Languages and Systems, pages 249–269.
Springer, 2014.

[35] Herbert Enderton. A Mathematical Introduction to Logic. Elsevier, 2001.

[36] David De Frutos Escrig, Jeroen J. A. Keiren, and Tim A. C. Willemse. Games
for bisimulations and abstraction. Logical Methods in Computer Science,
13(4:15), 2017.

[37] Wan Fokkink. Distributed Algorithms: An Intuitive Approach. MIT Press,
2013.

[38] Wan Fokkink. Introduction to Process Algebra. Springer, 2013.

[39] Wan Fokkink, Jan Friso Groote, and Michel Adriaan Reniers. Process alge-
bra needs proof methodology. EATCS Bulletin 82, pages 109–205, 2004.

[40] Michael Frank. Introduction to reversible computing: motivation, progress,
and challenges. In Proceedings of the 2nd Conference on Computing Fron-
tiers, pages 385–390. ACM, 2005.

[41] M.R. Frias et al. Dynalloy: upgrading Alloy with actions. In Software En-
gineering, 2005. ICSE 2005. Proceedings. 27th International Conference on,
pages 442–450. IEEE, 2005.

[42] David Geer. Is it time for clockless chips? (Asynchronous processor chips).
Computer, 38(3):18–21, 2005.

[43] Gregor Gössler et al. An approach to modelling and verification of compo-
nent based systems. In International Conference on Current Trends in Theory
and Practice of Computer Science, pages 295–308. Springer, 2007.

[44] Ed Grochowski et al. Best of both latency and throughput. In Computer
Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings.
IEEE International Conference on, pages 236–243. IEEE, 2004.

[45] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 12(3):463–492, 1990.

68

[46] Peter Höfner, Bernhard Möller, and Kim Solin. Omega algebra, demonic re-
finement algebra and commands. In International Conference on Relational
Methods in Computer Science, pages 222–234. Springer, 2006.

[47] Jann Horn et al. Reading privileged memory with a side-channel.
https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html, 2018. (Ac-
cessed 24-Aug-2018).

[48] Mohammad Izadi and Marcello M. Bonsangue. Recasting constraint au-
tomata into Büchi automata. In International Colloquium on Theoretical
Aspects of Computing, pages 156–170. Springer, 2008.

[49] Sung-Shik Jongmans. Automata-theoretic protocol programming. PhD the-
sis, Centrum Wiskunde & Informatica (CWI), Leiden University, 2016.

[50] Sung-Shik Jongmans and Farhad Arbab. Overview of Thirty Semantic For-
malisms for Reo. Scientific Annals of Computer Science, 22(1), 2012.

[51] Sung-Shik Jongmans and Farhad Arbab. Global consensus through local
synchronization: A formal basis for partially-distributed coordination. Sci-
ence of Computer Programming, 115-116:199 – 224, 2016.

[52] Sung-Shik Jongmans, Christian Krause, and Farhad Arbab. Encoding
context-sensitivity in Reo into non-context-sensitive semantic models. In
International Conference on Coordination Languages and Models, pages 31–
48. Springer, 2011.

[53] Stephen Cole Kleene. Representation of events in nerve nets and finite
automata. Technical report, Project RAND, Santa Monica, 1951.

[54] Paul Kocher et al. Spectre attacks: Exploiting speculative execution. arXiv
preprint arXiv:1801.01203, 2018.

[55] Christian Koehler et al. Reconfiguration of Reo connectors triggered by
dataflow. Electronic Communications of the EASST, 10, 2008.

[56] Dexter Kozen. A completeness theorem for kleene algebras and the algebra
of regular events. Information and computation, 110(2):366–390, 1994.

[57] Dexter Kozen. Kleene algebrawith tests. ACMTransactions on Programming
Languages and Systems, 19(3):427–443, 1997.

[58] Christian Krause et al. Modeling dynamic reconfigurations in Reo us-
ing high-level replacement systems. Science of Computer Programming,
76(1):23 – 36, 2011.

[59] Ten H. Lai and Tao H. Yang. On distributed snapshots. Information Pro-
cessing Letters, 25(3):153–158, 1987.

[60] Yi Li and Meng Sun. Modeling and verification of component connectors
in Coq. Science of Computer Programming, 113:285–301, 2015.

[61] Peter Linz. An introduction to formal languages and automata (fifth edition).
Jones & Bartlett Learning, 2011.

69

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

[62] Panagiotis Manolios. Correctness of pipelined machines. In International
Conference on Formal Methods in Computer-Aided Design, pages 181–198.
Springer, 2000.

[63] Jacques Mattheij. The several million dollar bug. https://
jacquesmattheij.com/the-several-million-dollar-bug/,
2014. (Accessed 29-Aug-2018).

[64] Rob Nederpelt and Herman Geuvers. Type Theory and Formal Proof: An
Introduction. Cambridge University Press, 2014.

[65] Oscar Nierstrasz and Franz Achermann. A calculus for modeling software
components. In Formal Methods for Components and Objects, pages 339–
360. Springer, 2003.

[66] David Park. Concurrency and automata on infinite sequences. In Theoreti-
cal computer science, pages 167–183. Springer, 1981.

[67] Bahman Pourvatan, Marjan Sirjani, Hossein Hojjat, and Farhad Arbab.
Symbolic execution of Reo circuits using constraint automata. Science of
Computer Programming, 77(7):848 – 869, 2012.

[68] Cristian Prisacariu. Synchronous kleene algebra. The Journal of Logic and
Algebraic Programming, 79(7):608–635, 2010.

[69] José Proença et al. Dreams: a framework for distributed synchronous co-
ordination. In Proceedings of the 27th Annual ACM Symposium on Applied
Computing, pages 1510–1515. ACM, 2012.

[70] J.J.M.M. Rutten. Elements of stream calculus: (an extensive exercise in
coinduction). Electronic Notes in Theoretical Computer Science, 45:358 –
423, 2001.

[71] J.J.M.M. Rutten. On Streams and Coinduction. Unpublished manuscript,
2002.

[72] Peter Selinger. A survey of graphical languages for monoidal categories. In
New structures for physics, pages 289–355. Springer, 2010.

[73] Michael Sipser. Introduction to the Theory of Computation. International
Thomson Publishing, 1996.

[74] Kenneth S. Stevens. Energy and performance models for clocked and
asynchronous communication. In Ninth International Symposium on Asyn-
chronous Circuits and Systems, pages 56–66. IEEE, 2003.

[75] Rob Strom and Shaula Yemini. Optimistic recovery in distributed systems.
ACM Transactions on Computer Systems (TOCS), 3(3):204–226, 1985.

[76] Andrew Tanenbaum. Structured Computer Organization (6th edition).
Prentice Hall, 2013.

[77] Tommaso Toffoli. Reversible computing. In International Colloquium on
Automata, Languages, and Programming, pages 632–644. Springer, 1980.

70

https://jacquesmattheij.com/the-several-million-dollar-bug/
https://jacquesmattheij.com/the-several-million-dollar-bug/

[78] Tommaso Toffoli and Norman H. Margolus. Invertible cellular automata:
A review. Physica D: Nonlinear Phenomena, 45(1-3):229–253, 1990.

[79] Augustus Uht and Vijay Sindagi. Disjoint Eager Execution: An Optimal
Form of Speculative Execution. In Proceedings of the 28th Annual Interna-
tional Symposium on Microarchitecture, pages 313–325. IEEE/ACM, 1995.

[80] Johan van Benthem. Modal Logic for Open Minds. CSLI Publications, Stan-
ford University, 2010.

[81] Rob J. Van Glabbeek andW. PeterWeijland. Branching time and abstraction
in bisimulation semantics. Journal of the ACM, 43(3):555–600, 1996.

71

	Introduction
	Speculative Execution
	Running Example

	Language
	Compositions
	Interfaces
	Components

	Foundation
	Data Streams
	Logical Formalism
	Coordination Protocols
	Coordination Games

	Components
	Endpoints
	Channels
	Buffers
	Nodes

	Properties
	Independence
	Synchronicity
	Deadlock and Livelock
	Instantaneousness
	Linearity
	Causality

	Conclusion
	Summary
	Related Work

	Bibliography

