
© 2025 the author(s)
Licensed under Creative Commons Attribution International 4.0 (CC-BY-4.0).

dr. heap is an independent publication, for informational and educational purposes only. Opinions
expressed here do not necessarily reflect those of any organization—including the past, current
and future employer(s) of the author(s) or any of their affiliations and/or associations.

Can the Collatz conjecture be proven, or not?

Hans-Dieter A. Hiep

November 1, 2023

1 Introduction

In 1937, shortly after the mathematician Lothar Collatz obtained his doctorate,
he wrote down a problem in his notebook that later became known as Collatz’
problem or the (3x+ 1)-problem. The problem is remarkable since it is easy to
state, but for more than eighty years no solution had been found.

Before the problem can be stated, we first need two ingredients: we define
a function, and we recall what is repeated function application. The function f
is defined on the positive natural numbers (1, 2, 3, et cetera) with the following
specification:

f(x) = x÷ 2 if x is even,

f(x) = 3× x+ 1 if x is odd.

Now take an arbitrary positive natural number n. We can repeatedly apply
the function f starting with n, i.e. f(n), f(f(n)), f(f(f(n))), et cetera. We
write f i(n) to mean that the function f is applied i times starting with n, so
that we have f1(n) = f(n) and f i+1(n) = f(f i(n)). The superscript notation,
an operation on a function, should not be confused with exponentiation, an
operation on a number. With this in mind, we can state the problem: for every
positive natural number n, is there an i such that f i(n) = 1?

We can first try out a number of examples, to gain some intuition about the
problem. If we take n = 1, can we find an i? Clearly, f(1) is 4, since 1 is odd
and so the first clause of the definition of f applies, and 3× 1+ 1 is 4. Then we
evaluate f(f(1)), which is f(4): since 4 is even the second clause applies so we
have f(4) = 2. Finally, we evaluate f(f(f(1))), which is f(2): since 2 is even
we have f(2) = 1. So f3(1) = 1, hence we can take i to be three. For n = 1 the
problem can be solved.

The process we tried is called iteration. We find i by starting with the
smallest value and try out successively larger values for i until we reach our
desired destination. This process works efficiently, since the computations we
did in the past to find out whether i was a solution can be reused to find out
whether i + 1 is a solution. In the case of Collatz’ problem, we see that the
outcome of the previous try, i.e. f i(n), is what we feed back as input in the next
try, i.e. f(f i(n)) computes f i+1(n).

1

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9677-6644
https://mathshistory.st-andrews.ac.uk/Biographies/Collatz/


Can the Collatz conjecture be proven, or not?

Such iterative processes can be written down neatly. Say we start with n = 5.
How often do we need to apply the function f until we reach the destination 1?
We write the following sequence, where each number is separated by an arrow:

5 −→ 16 −→ 8 −→ 4 −→ 2 −→ 1.

the computation sequence starts with 5 and we get 16 after applying f once
(3 × 5 + 1 = 16), we get 8 after applying f again (so twice from our starting
point), and so on, until we reach our destination after applying f five times
from where we started. In other words, we have f5(5) = 1. So for n = 5, we
know there exists an i, namely 5, such that f i(n) = 1. But meanwhile we also
discovered for n = 16, n = 8, n = 4 and n = 2 a solution, since these were the
intermediary numbers that turned up in the computation starting in 5.

As another example, take n = 3. We then have f(3) = 3 × 3 + 1 = 10,
and f(10) = 5, and from that point onward we already know what happens.
Starting with the number 5, we see that we can extend the computation sequence
towards the right (each time computing the function f), but we can also extend
the computation sequence towards the left:

. . . −→ 3 −→ 10 −→ 5 −→ . . .

What would be the number before 3? And how would the computation sequence
starting from 7 look like? The reader may try answering these questions, to gain
some intuition about Collatz’ problem.

For some numbers n, the solution is not immediately obvious. The reader
may try out n = 27 (but, beware, the computation takes more than 100 steps).
In fact, for large enough n, the intermediary numbers that the computation goes
through can be used to generate pseudo-random numbers that passes standard
tests for randomness [12]. This fact may give us the impression that the numbers
involved in the computation do not give much insight into solving the problem.

Now, the conjecture states that there is a solution for every n. This is what
is known as the ‘Collatz conjecture’. Although the problem is quite old, more
recently a new interest for the problem emerged—as witnessed by the many
published articles, including scientific articles (e.g. [4, 3, 2]) and articles in the
popular press (e.g. The Simple Math Problem We Still Can’t Solve in Quanta-
Magazine). Also on social media such as MathOverflow, unanswered questions
are raised, such as “How to know when the Collatz conjecture has been proved?”

In 2013, the late John H. Conway wrote about the problem in The Amer-
ican Mathematical Monthly, in an article entitled On unsettleable arithmetical
problems [8]. In that article, Conway also speaks of well-known results such as
Turing’s unsolvable halting problem or Gödel’s incompleteness theorem. The
halting problem is the question whether an algorithm halts (which, as we shall
see, has Collatz’ problem as an instance) and Turing showed that it is in general
unsolvable. The incompleteness theorem states that there are true statements in
a formal system called Peano arithmetic that cannot be proven from Peano’s ax-
ioms. The two results are closely related: there is a proof of the incompleteness
theorem by reduction to the halting problem [11].

© 2025 the author(s) 2 CC-BY-4.0

https://www.quantamagazine.org/why-mathematicians-still-cant-solve-the-collatz-conjecture-20200922/
https://math.stackexchange.com/questions/4364817/how-to-know-when-the-collatz-conjecture-has-been-proved
https://creativecommons.org/licenses/by/4.0/


Can the Collatz conjecture be proven, or not?

Conway argues that it is very unlikely that the Collatz problem is settleable—
a technical term he introduces for true assertions, as phrased in a set theoretical
language, that can also be proven. A problem is unsettleable if it is true, but
cannot be proven. There surely are unsettleable (or, unsettling?) assertions: the
axioms of set theory are insufficient for proving all true assertions, by Gödel’s
incompleteness theorem. But I find Conway’s argument, that Collatz conjecture
is unlikely settleable, too difficult to grasp—it is probably because I lack the
background knowledge and intuition behind his argument. However, Conway is
not sure, and still leaves open the possibility for the conjecture to be proven:

“I don’t want readers to take these words on trust but rather to
encourage those who don’t find them convincing to try even harder
to prove the Collatz Conjecture!” [8]

A quick search on Google Scholar shows articles, that claim to have proven
the Collatz conjecture. These articles are not published, but are available on
pre-print servers or institutional repositories on the Web. How can we evaluate
such articles? Are they really proofs? Is it worth our time to review them?

By accident, I stumbled upon the pre-print paper Collatz conjecture becomes
theorem by Mirkowska and Salwicki [10]. Grażyna Mirkowska is a professor
emeritus of Warsaw University, and she is an expert on mathematical logic,
program semantics, and formal verification. Andrzej Salwicki is also professor
emeritus, founder of the journal Fundamenta Informaticae, and he is an expert
on the mathematical foundations of computer science. Both worked together on
the 1978 book on Algorithmic Logic [9], among other works. Algorithmic logic
is closely related to my field of expertise, Hoare’s logic and dynamic logic.

Maybe I can understand what is written in their article? In the final remarks,
the authors write:

“We know that our presentation is clumsy (we are of age, English is
not our native language).” [10]

It is not a good idea to reject this paper because of a clumsy presentation: the
authors have a track record in the field, and their work must be taken seriously.
Maybe I can figure out whether their paper makes sense to me? The adventure
thus begins... And in this article, I do not present my own work, but I present
what I could distill from what Mirkowska and Salwicki wrote.

This article assumes the reader has knowledge of Hoare’s logic. See, for
reference: A Discipline of Programming by Edsger Dijkstra (1976), Math-
ematical Theory of Program Correctness by Jaco de Bakker (1980), The
Science of Programming by David Gries (1981), Program Verification by
Nissim Francez (1992), Verification of Sequential and Concurrent Programs
by Krzysztof Apt, Frank de Boer & Ernst-Rüdiger Olderog (2009). See the
survey paper by Apt and Olderog [5] for more references.

© 2025 the author(s) 3 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/


Can the Collatz conjecture be proven, or not?

while x ̸= 1 do
if even(x) then

x := x÷ 2
else

x := 3× x+ 1
fi

od

Figure 1. A program representation of the Collatz conjecture.

2 Problem statement

First, we revisit the conjecture. We can understand the conjecture in a different
way, by studying the program in Figure 1. Looking at the program as given, we
have the following primitive operations and tests:

• the test x ̸= 1 for deciding whether the number x is not equal to 1,

• the test even(x) for deciding whether x is even,

• the primitive operation x := x ÷ 2 for dividing the number by two—but
this operation is only executed in the context where we know that the old
value of x is even and not equal to 1,

• the primitive operation x := 3 × x + 1 that multiplies the old value of x
by the constant three and adds the constant one—this operation is only
executed in the context where we know that x is odd and not equal to 1.

If the program terminates on every input x ≥ 1, then the Collatz conjecture is
true. From the terminating execution of the program we can then extract the
computation sequence, simply by looking at the values that x take over time.
If, however, the program runs infinitely for some input x ≥ 1, then we have a
counterexample to the Collatz conjecture.

Let us abbreviate the program in Figure 1 by S. We reformulate the question,
whether the program S terminates or not, as follows:

• If {x ≥ 1∧ϕ} S {false} is provable for some ϕ in Hoare’s logic for partial
correctness such that the precondition is satisfiable, then we know that
the Collatz conjecture is false.

• If {x ≥ 1} S {true} is provable in Hoare’s logic for total correctness, then
we know that the Collatz conjecture is true.

This formulation raises a number of question, as often is the case in Hoare’s
logic. What is the language we use in assertions? What is the program theory?
And what is the background theory?

What is the logical language we use in assertions? We restrict ourselves
to a first-order language consisting of addition only. This language consists of
first-order formulas with respect to a signature with:

© 2025 the author(s) 4 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/


Can the Collatz conjecture be proven, or not?

• the constant individual symbol 0,

• the constant individual symbol 1,

• the binary function symbol +.

We can also introduce abbreviations: for every natural number n we have the
numeral n. We have 0 = 0, and for any n ≥ 0 we have (n+ 1) = n+1. In other
words, we have the numerals:

0 = 0, 1 = 1, 2 = 1 + 1, 3 = (1 + 1) + 1, 4 = ((1 + 1) + 1) + 1, . . .

Note that these numerals are terms constructed from constants and function
symbols, hence do not depend on the value of variables: the numerals are all
ground. Also, we implicitly used the fact that 0 + 1 = 1 since this follows from
the background theory we introduce later.

We introduce the abbreviation x < y to stand for (∃z)(z ̸= 0 ∧ x + z = y)
where z is fresh (so not equal to either x or y). y > x abbreviates x < y, and
x ≥ y abbreviates y < x ∨ y = x.

In a similar way as the numerals, can also introduce abbreviations for mul-
tiplication by a numeral: 0 × x = 0, (n+ 1) × x = x + (n × x) for n ≥ 0. In
other words, we have the abbreviations

0× x = 0, 1× x = x, 2× x = x+ x, 3× x = x+ x+ x, . . .

where we implicitly assume that + is associative, and x+0 = x (again, we shall
introduce the background theory later, from which these properties follow).

What is the program theory? This question amounts to showing how we
axiomatize the primitive operations and tests. We introduce a predicate symbol
for the test even(x), where x is a variable. We can define this predicate symbol
in our language as follows:

even(x) ≡def (∃y)(x = y + y).

It is necessary that tests are decidable. Otherwise, if one would execute the
program one can not make the case distinction in the if -statement.

Given that we have a formal understanding of the test, how do we axiomatize
the two updates? We introduce the following axiom schemes.

{(∃y)(x = y + y ∧ ϕ[x := y])} x := x÷ 2 {ϕ} where y is fresh

The precondition of the division-by-two update states that the original value
of x must be even before executing the operation. The witness of evenness, y,
is substituted for x in the postcondition—and we require the variable y to be
fresh, that is, not already occurring in ϕ and different from the variable x.

{ϕ[x := (3× x) + 1]} x := 3× x+ 1 {ϕ}

The precondition of the times-three-plus-one update is the weakest precondition
given the postcondition ϕ. Notice how we are able to express the new value of x

© 2025 the author(s) 5 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/


Can the Collatz conjecture be proven, or not?

in terms of the old value of x only by using the constant symbol 1 and function
symbol + from our signature (recall that our multiplication by a numeral is an
abbreviation, viz. x+ x+ x).

Now that we have axiomatized the test and primitive operations, we turn
to the last question. What is the background theory? Until now, one may
freely interpret what the language means. By means of a background theory
we restrict the possible interpretations. From the background theory, we can
derive consequences which must hold in every program state.

As background theory we take Presburger arithmetic. Presburger arithmetic
is a restriction of Peano arithmetic, as it speaks only of the addition operation
on numbers. By Gödel’s incompleteness theorem, the formal theory of Peano
arithmetic can be shown to be incomplete, that is, there are valid sentences
that are not consequences of the axioms. What is remarkable about Presburger
arithmetic, however, is that it’s theory is complete: all valid sentences are also
consequences of the axioms.

Furthermore, the axiomatization of Presburger arithmetic is recursive, that
is, there exists a procedure to decide what are the axioms of Presburger arith-
metic. From this, we also obtain that the formal theory of Presburger arithmetic
is decidable: for any sentence, either we can use the standard proof system of
first-order logic and prove that the sentence is valid, or we can effectively find
a model that satisfies all axioms but in which the sentence is false.

There are different presentations of the same theory. We shall give one that
is short on paper, but it is presented by using the unary function s. The unary
function s is defined by s(x) = x + 1, and we have that 1 = s(0). The other
axioms of Presbuger arithmetic are the following:

1. (∀x)(s(x) ̸= 0),

2. (∀x)(∀y)(s(x) = s(y) → x = y),

3. (∀x)(x+ 0 = x),

4. (∀x)(∀y)(s(y) + x = s(y + x)),

5. ϕ(0) ∧ (∀x)(ϕ → ϕ(s(x))) → (∀x)ϕ.

The last is an axiom scheme for any formula ϕ, and where ϕ(t) is the result of
replacing the free variable occurrences of x by the term t. From these axioms,
the usual properties of addition follow. For example:

• (∀x)(∀y)(x+ y = y + x),

• (∀x)(∀y)(∀z)(x+ (y + z) = (x+ y) + z),

• (∀x)(x ̸= 0 → (∃y)(x = y + 1)),

• (∀x)(∀y)(∀z)(x+ z = y + z → x = y).

• et cetera.

© 2025 the author(s) 6 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/


Can the Collatz conjecture be proven, or not?

3 Different interpretations

Now, we turn to the semantics of the program S, of which the halting problem
captures the Collatz conjecture. A program is nothing but a piece of text: a
finite string of symbols. One may think of the intended meaning of a program,
but nothing prevents two people looking at the same string of symbols and inter-
pret it differently. To illustrate this concept, we shall look at two interpretations
of S. The fact that this simple program can be interpreted in different ways,
somewhat delighted me when I first read the pre-print paper by Mirkowska and
Salwicki [10].

The standard interpretation is given by taking the following data structure:

• Take the natural numbers N = {0, 1, 2, 3, . . .} as domain.

• Interpret the symbols in the usual way: + is addition of natural numbers,
and < is less than.

This standard interpretation satisfies all the axioms of Presburger arithmetic.
Alternatively, one could give a complex interpretation, as follows:

• Take the following subset of the complex numbers C as domain:

{k + wι | k ∈ Z and w ∈ Q+ and if w = 0 then k ≥ 0}

where k is an integer, w is a non-negative rational, and ι is
√
−1. (We

use the Greek ι instead of the Latin i, to avoid confusion with the natural
number i we used earlier in function iteration f i.) The condition implies
that we have no negative real numbers in our domain.

• The constant individual symbols 0 and 1 are interpreted as the complex
numbers 0 + 0ι and 1 + 0ι, respectively.

• The binary function symbol + is interpreted as usual:

(k + wι) + (k′ + w′ι) = (k + k′) + (w + w′)ι.

Note in this equation alone, the symbol + has four different meanings: the
function symbol + in our language, we have the + on complex numbers,
we have the + on integers, and we have the + on non-negative rationals!

This complex interpretation satisfies all the axioms of Presburger arithmetic.
In the complex interpretation, we have the so-called reachable elements and

the unreachable elements. The reachable elements are the complex numbers
k + wι in our domain with a zero imaginary part (and so, by the condition,
we know that k ≥ 0). The unreachable elements are the complex numbers in
our domain with a non-zero imaginary part. Any operation performed on only
reachable elements, gives us back a reachable element. However, an operation
performed with at least one unreachable element, results in an unreachable
element. This follows from the fact that the imaginary part is non-negative.

© 2025 the author(s) 7 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/


Can the Collatz conjecture be proven, or not?

In the complex interpretation, the order of elements is defined by x < y,
which abbreviates (∃z)(z ̸= 0 ∧ x + z = y). We can understand the order
relation on complex numbers (k +wι) < (k′ +w′ι) as it were a lexical order on
pairs: ⟨w, k⟩ < ⟨w′, k′⟩. This means that all reachable elements (where w = 0)
are below all unreachable elements (where w > 0). Further, in the complex
interpretation we have that an element is even iff the real part is even.

With our complex interpretation, we can actually give an infinite run of the
program! The following is a demonstration of a computation sequence:

(8 +
1

2
ι) −→ (4 +

1

4
ι) −→ (2 +

1

8
ι) −→ (1 +

1

16
ι) −→

(4 +
3

16
ι) −→ (2 +

3

32
ι) −→ (1 +

3

64
ι) −→ (4 +

9

64
ι) −→ . . .

The computation sequence can be mapped back to an execution of the program
(this takes a bit of work, but it is not difficult to see that the number generated
each step is the value of the variable x right at the start of each iteration of
the while-loop). Notice that, since we start with an unreachable value (the
imaginary part is non-zero), the test of the loop never fails, and so the body of
the loop is always taken. Any of the two operations (division-by-two or multiply-
by-three-add-one) on an unreachable value result in an unreachable value again,
which can never be equal to the reachable value of 1.

However, this infinite run cannot be used to argue that the Collatz conjecture
is false, since the conjecture speaks of the positive natural numbers and not the
complex numbers we have introduced. So, coming back to our reformulated
question: in Hoare’s partial correctness logic, can we prove

{x ≥ 1 ∧ ϕ} S {false}

for some ϕ, and show that the precondition is satisfiable? No, we can not
prove this based on our example above. The reason why is that the complex
interpretation is elementarily equivalent to the standard interpretation. This
means that the same first-order sentences are true in both the standard inter-
pretation as in the complex interpretation. Since our assertion language uses a
first-order language, we cannot express in ϕ that the starting value of x has to
be an unreachable element. Namely, the ability to express that x is an unreach-
able element (which would be false in the standard interpretation, but true in
the complex interpretation under existential quantification) contradicts that the
standard and complex interpretations have the same first-order theories.

Note, however, that the above correctness formula may still be provable—
showing the Collatz conjecture is false. If one gives a proof of

{x ≥ 1 ∧ ϕ} S {false}

in Hoare’s logic for partial correctness, then the proof must be sound for the
standard interpretation too. If one then also shows that ϕ is satisfiable in the
standard interpretation, then the Collatz conjecture is settled (to be false).

© 2025 the author(s) 8 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/


Can the Collatz conjecture be proven, or not?

On the other hand, if we look at proving

{x ≥ 1} S {true}

in Hoare’s logic for total correctness, are we sure that a proof means that the
Collatz conjecture is true? In Hoare’s total correctness logic, we employ a
proof rule for reasoning about the termination of the while-loop by giving two
ingredients: the invariant (an assertion that holds before and after the loop and
also before and after the loop body) and the variant (a term denoting a value
that must decrease each iteration, and it must be shown that this term is larger
than or equal to zero assuming the invariant).

There may be a problem with non-standard interpretations. For example,
in the complex interpretation, what does the variant denote? It may no longer
express a quantity that ensures that the loop body is executed finitely many
times. In fact, we already know that every unreachable element is larger than
0, and every unreachable element has infinitely many predecessors: so requiring
that during the loop body the variant decreases no longer yields an argument
that the computation must be finite. Yet, this is not a problem, for we can
always ignore non-standard interpretations. The proof rule is sound: interpret-
ing total correctness with respect to the standard interpretation works fine. In
that interpretation, the variant expresses that, before executing the loop, we
can predict the maximum number of iterations that will be taken based on the
values of program variables in the initial state.

Mirkowska and Salwicki suggest that the Collatz conjecture, formulated as
questions of provability in Hoare logic as we did above, is not precise. They then
start working on the level of the semantics in the complex interpretation, and
restrict attention to those states in which the program variables have reachable
values. However, here I disagree. That there exists non-standard interpretations
is not an excuse to not give a proof in Hoare’s logic: although such a proof can
also be interpreted in a non-standard interpretation, there is always the standard
interpretation one can look at.

What I thus expected to see was a clear description from which I can extract
a proof in Hoare’s total correctness logic. In particular, to perform such an
extraction, I need to know the answers to the following questions:

• What is the loop invariant of S?

• Is the loop invariant expressible as an assertion?

• What is the loop variant of S?

• Is the loop variant expressible?

Unfortunately, the paper does not clearly give answers to these questions. When
I read the paper, I was not able to verify that there actually is a proof. The
paper presents many interesting ideas, though, but I feel that I am doing original
research to see how the ideas presented are related to me trying to answer the
questions above. I should not have the feeling I am doing original research when
my task and only task is to verify a proof!

© 2025 the author(s) 9 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/


Can the Collatz conjecture be proven, or not?

4 Conclusion and closing remarks

Unfortunately, I am unable to extract a proof from the pre-print paper by
Mirkowska and Salwicki [10]. Thus, the Collatz conjecture still remains unsettled—
at least in my mind—and thus remains unsettling. The lesson, if there is a need
for one, is that non-standard interpretations of Hoare’s logic exists, and may
shed light on a problem from a different angle.

At some point during reading, I got the following intuitions. I share them
here—just for fun—but these closing remarks may not be valuable to anyone
and may only cause confusion.

If we revisit the computation sequence above, that yielded an infinite run,
we see the following pattern (we call these the even step and the odd step):

(k +
3o

2e
ι) −→ (

k

2
+

3o

2e+1
ι) if k is even,

(k +
3o

2e
ι) −→ ((3× k + 1) +

3o+1

2e
ι) if k is odd.

For simplicity, assume k is a positive natural number, and o, e are natural num-
bers. Forgetting about the imaginary part, we see simply that the function f
we defined in the introduction is applied on k. However, in the imaginary part,
we see that the rational number is ‘counting’ how many times which part of the
function was applied. If k was even, we increase the denominator from 2e to
2e+1. If k was odd, we increase the numerator from 3o to 3o+1.

Now, for any computation sequence on natural numbers of the domain of the
standard interpretation, there exists infinitely many corresponding computation
sequences on the complex numbers of the domain of the complex interpretation.
We are free, so to say, to choose the imaginary part of the complex number. So,
let us look at the complex interpretation. From now onward, my thoughts are
a bit cloudy and imprecise—so we proceed in unclear territory.

Since in computations of the complex interpretation, ‘we are free’ to choose
the imaginary part, could we treat the imaginary part as a ghost count of the
number of times we see an even number and the number of times we see an
odd number? If the even numbers tend to outnumber the odd numbers then we
are going towards the exit—but at any moment we are doubtful, we may freely
reset the counters. Even when we reach the destination, we may still continue
(here −→∗ means multiple steps, even or odd):

(1 + ι) −→∗ (1 +
3

4
ι) −→∗ (1 +

9

16
ι) −→∗ (1 +

27

64
ι) −→ . . .

Here the denominator grows faster than the numerator: the imaginary part
tends towards zero in the limit if we never reset the ghost counter back to ι.
Does this intuition help? I do not know. Maybe one can show that there is
a computation sequence in the complex interpretation in which the imaginary
part tends to zero if and only if there is a corresponding computation sequence
in the standard interpretation? If so, can we then also show that a computation
sequence tends to zero if and only if it contains a number with 1 as real part?

© 2025 the author(s) 10 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/


Can the Collatz conjecture be proven, or not?

The intuition here is that we want to jump ahead a potential computation
sequence starting in some number, as if we could travel in time. The target of
our jump is a number with the same real part—that would be evidence of a loop.
If the loop also exists in the standard interpretation, then all the intermediary
numbers must be natural numbers. Suppose we are at an arbitrary section of
the computation sequence:

(f0(k) + w0ι) −→ (f1(k) + w1ι) −→ . . . −→ (f i(k) + wiι)

where f0(k) = k. The sequence w0, w1, . . . are the values of the ghost counters.
We now want to reset the ghost counters back to ι, but keep the real part. Note
that the imaginary part of ι is the fraction 30 ÷ 20 = 1, meaning both even and
odd counters are zero. After resetting the ghost counters, we have the section
that starts with (k + ι):

(f0(k) +
3o0

2e0
ι) −→ (f1(k) +

3o1

2e1
ι) −→ . . . −→ (f i(k) +

3oi

2ei
ι)

where the sequences o0, o1, o2, . . . and e0, e1, e2, . . . are running ghost counts with
o0 = e0 = 0. For any index in the sequence 0 ≤ j ≤ i, we have that oj + ej = j.

Is it possible to have f0(k) = f i(k) but where the numerator grows faster
than the denominator, i.e. 3oi > 2ei? If so, can it then also have 1 occurring
in the sequence? Note that 1 is never reached as a result of 3 × x + 1 (only x
with zero real part would give 1, but that never occurs since 0+wι is even and
thus stays even), so from that point onward the denominator would dominate
the numerator.

And what about the non-repeating computation sequences? Where there is
no loop, but in which the imaginary part does tend to zero?

So many questions are still floating around in my mind, like butterflies...

References

[1] Idriss J. Aberkane. A collatz proof from the book. 2021. URL: https:
//hal.science/hal-03364693.

[2] Paul J. Andaloro. The 3x + 1 problem and directed graphs. Fibonacci
Quarterly, 40(1):43–54, 2002. doi:10.48550/arXiv.math/0608208.

[3] Ştefan Andrei, Manfred Kudlek, and Radu Ştefan Niculescu. Some results
on the Collatz problem. Acta Informatica, 37:145–160, 2000. doi:10.1007/
s002360000039.

[4] Ştefan Andrei and Cristian Masalagiu. About the Collatz conjecture. Acta
Informatica, 35:167–179, 1998. doi:10.1007/s002360050117.

[5] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Fifty years of Hoare’s
logic. Formal Aspects of Computing, 31:751–807, 2019. doi:10.1007/

s00165-019-00501-3.

© 2025 the author(s) 11 CC-BY-4.0

https://hal.science/hal-03364693
https://hal.science/hal-03364693
https://doi.org/10.48550/arXiv.math/0608208
https://doi.org/10.1007/s002360000039
https://doi.org/10.1007/s002360000039
https://doi.org/10.1007/s002360050117
https://doi.org/10.1007/s00165-019-00501-3
https://doi.org/10.1007/s00165-019-00501-3
https://creativecommons.org/licenses/by/4.0/


Can the Collatz conjecture be proven, or not?

[6] Dora M. Ballesteros, Jimmy Peña, and Diego Renza. A novel image en-
cryption scheme based on Collatz conjecture. Entropy, 20(12):901, 2018.
doi:10.3390/e20120901.

[7] Oliver K. Clay. The long search for Collatz counterexamples. Journal of
Humanistic Mathematics, 13(2):199–227, 2023. doi:10.5642/jhummath.

YQHO7207.

[8] John H. Conway. On unsettleable arithmetical problems. The American
Mathematical Monthly, 120(3):192–198, 2013. doi:10.4169/amer.math.

monthly.120.03.192.

[9] Grażyna Mirkowska and Andrzej Salwicki. Algorithmic logic. Springer,
1986.

[10] Grażyna Mirkowska and Andrzej Salwicki. Collatz conjecture becomes the-
orem. 2023. doi:10.48550/arXiv.2310.13035.

[11] George Tourlakis. Gödel’s first incompleteness theorem via the halting
problem. In Computability, pages 265–280. Springer, 2022. doi:10.1007/
978-3-030-83202-5_8.

[12] David Xu and Dan E. Tamir. Pseudo-random number generators based on
the Collatz conjecture. International Journal of Information Technology,
11(3):453–459, 2019. doi:10.1007/s41870-019-00307-9.

© 2025 the author(s) 12 CC-BY-4.0

https://doi.org/10.3390/e20120901
https://doi.org/10.5642/jhummath.YQHO7207
https://doi.org/10.5642/jhummath.YQHO7207
https://doi.org/10.4169/amer.math.monthly.120.03.192
https://doi.org/10.4169/amer.math.monthly.120.03.192
https://doi.org/10.48550/arXiv.2310.13035
https://doi.org/10.1007/978-3-030-83202-5_8
https://doi.org/10.1007/978-3-030-83202-5_8
https://doi.org/10.1007/s41870-019-00307-9
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Problem statement
	Different interpretations
	Conclusion and closing remarks

