
© 2025 the author(s)
Licensed under Creative Commons Attribution International 4.0 (CC-BY-4.0).

dr. heap is an independent publication, for informational and educational purposes only. Opinions
expressed here do not necessarily reflect those of any organization—including the past, current
and future employer(s) of the author(s) or any of their affiliations and/or associations.

Correctness of Two Sorting Algorithms

Hans-Dieter A. Hiep

March 15, 2023

1 Introduction

OnWednesday, 8th of March, 2023, I gave a lecture about two sorting algorithms
for the course Program Correctness (see also the lecture series on YouTube,
available only in Dutch). Then, due to limited time, I only discussed a sketch
of the correctness proof. But I promised the students that I would write down
the correctness argument in more detail. So, in this article, I will revisit the two
sorting algorithms and give the correctness proof in full detail.

We had a look at two sorting algorithms: gnome sort and bozosort. The
purpose of a sorting algorithm is to operate on an array and rearrange its ele-
ments in order. The two algorithms presented are not the most efficient sorting
algorithms, but that is not of our concern: instead, we will look at them from
the perspective of their correctness.

The main questions answered in this article are:

• What is the (intuitive) argument of correctness of these algorithms?

• How to write down a proof outline for these algorithms?

When proving an algorithm correct, it is important to first have a rough, infor-
mal, idea how the correctness argument should go. Only then it makes sense
to formalize the argument, by writing down a proof outline. During the latter
activity, one can systematically check the argument to ensure there is no fault
in one’s own reasoning. Thus, both aspects are important: the bigger picture
and the devil’s in the details.

This blog post assumes the reader has basic knowledge of Hoare logic. In
case you want an introduction, you can consult one of the following books
(in order of appearance): A Discipline of Programming by Edsger Dijkstra
(1976), Mathematical Theory of Program Correctness by Jaco de Bakker
(1980), The Science of Programming by David Gries (1981), Program Ver-
ification by Nissim Francez (1992), Verification of Sequential and Concur-
rent Programs by Krzysztof Apt, Frank de Boer & Ernst-Rüdiger Olderog
(2009). See the survey paper by Apt and Olderog [1] for more references.

1

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9677-6644
https://studiegids.universiteitleiden.nl/courses/114222/program-correctness?ref=hansdieterhiep.nl
https://youtube.com/playlist?list=PLgybIyDbLkESaKYMLk6X_UnenTHWWuB2B&ref=hansdieterhiep.nl

Correctness of Two Sorting Algorithms

2 Sorting

The purpose of a sorting algorithm is to rearrange elements in an array, so that
the final result is an array where all elements are in order. For simplicity, we
assume we are dealing with an array of integers. The ordering of integers is
their natural order, i.e. . . . ≤ −2 ≤ −1 ≤ 0 ≤ 1 ≤ 2 ≤

Given array a of type integer → integer. We define the following predicate:

Sorted(a) ≡def ∀i, j : i ≤ j → a[i] ≤ a[j].

The above predicate expresses that the whole array a is sorted. We also define:

Sorted(a, f, t) ≡def ∀i, j : f ≤ i ≤ j ≤ t → a[i] ≤ a[j].

This predicate expresses that array a is sorted on the range [f, t], i.e. from index
f until and including index t.

Alternatively, we can define the following predicates:

Sorted ′(a) ≡def ∀i : a[i] ≤ a[i+ 1]

and
Sorted ′(a, f, t) ≡def ∀i : f ≤ i < t → a[i] ≤ a[i+ 1].

It can now be verified (e.g. using a proof system for predicate logic such as natu-
ral deduction) that Sorted(a) ≡ Sorted ′(a) and Sorted(a, f, t) ≡ Sorted ′(a, f, t).

We may use these predicates to describe the desired outcome of a sorting
algorithm: namely, that array a is sorted (on a particular range). However, this
property alone is not sufficient. We also require a relation between the input
array and the output array, to specify that the algorithm did not insert new,
duplicate old, or throw out any elements. Note that the input array and the
output array are stored in the same place in memory, so it matters not where
we look but when we look. By input array we mean the value of the array a
before the algorithm runs, and by output array we mean the value of the (same)
array a but after the algorithm finished running.

To avoid algorithms inserting new, duplicating old, or throwing out ele-
ments, we require there exists a one-to-one correspondence between the input
and output array.

Given array b of type integer → integer. We use b as the name for the
input array, whereas a is the name for the output array. We now define the
following predicate:

Permut(a, b) ≡def ∃π : Inj (π) ∧ Surj (π) ∧ ∀i : b[π(i)] = a[i].

This predicate expresses that the whole array a is a permutation of array b.
The intuition of Permut(a, b) is that π represents a bijection between integers:
a one-to-one correspondence between the indices of the output array a and input
array b. Here we make use of the following definitions:

Inj (π) ≡def ∀x, y : π(x) = π(y) → x = y

© 2025 the author(s) 2 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

Correctness of Two Sorting Algorithms

and
Surj (π) ≡def ∀x : ∃y : π(y) = x.

(As an aside, i.e. not relevant for the rest of this article, note that it depends
on the language in which we work whether quantification over π is first-order or
not. If we work in the language of Peano arithmetic, this quantifier is higher-
order. But if we work in the language of set theory, this quantifier is first-order
where π ranges over sets representing functions integer → integer.)

We actually need a stronger predicate than Permut , namely to expresses
that array a is a permutation of array b for a particular range, and leaves all
other elements in place. Compare this with how we have two predicates for being
sorted: Sorted(a) and Sorted(a, f, t). So we now define the following predicate:

Permut(a, b, f, t) ≡def ∃π : Inj (π) ∧ Surj (π) ∧ (∀i : b[π(i)] = a[i]) ∧
(∀i : f ≤ i ≤ t ∨ π(i) = i).

The new condition requires of the bijection π that every index i that falls outside
of the range [f, t] is mapped identically. We could say that the latter predicate
expresses a restricted permutation.

3 Gnome sort

Gnome sort is a simple sorting algorithm. The story behind the algorithm is as
follows. Suppose there is a garden with flower pots arranged next to each other
on a table. Each flower pot contains a beautiful flower of a certain height. A
gnome comes along, and being a pedantic gnome, wants to arrange the flowers
in such way that the flowers in the pots are ordered from the smallest flower to
the largest flower on the table.

How does the gnome achieve this? The gnome stands next to the table, in
front of a single flower pot. The procedure is easy:

1. The gnome starts at the leftmost flower pot.

2. If there is no preceding flower pot, or if the flower in the preceding pot is
smaller than the flower in the pot in front of the gnome, then the gnome
takes one step to the right.

3. If there is a preceding flower pot and the flower in the preceding pot is
larger than the flower in the pot in front of the gnome, the gnome swaps
the two flowers and takes one step to the left.

4. If the gnome has not reached the end of the table, it goes back to step 2.

Now, we use an array a to represent an array of flower pots, each cell of the
array is a flower pot, and the value stored in each cell represents the height of
a flower. Swapping the values of two cells of the array would represent that the
gnome, being a true gardener, would take out the flowers of the two pots and
place them back in the other pot. Try to imagine how the gnome runs!

© 2025 the author(s) 3 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

Correctness of Two Sorting Algorithms

i := f ;
while i ≤ t do

if i = f ∨ a[i− 1] ≤ a[i]
then

i := i+ 1
else

z := a[i];
a[i] := a[i− 1];
a[i− 1] := z;
i := i− 1

fi
od

Figure 1. The gnome sort algorithm.

Note that gnome sort is slightly different from insertion sort. In the insertion
sort algorithm, we need to keep track of two locations: the location of the
element which is being inserted in the proper place, and the location of where to
insert that element. Insertion sort is typically implemented using a nested loop:
after the given element is inserted in the prefix (inner loop), we can continue with
the next element after the prefix (outer loop). However, in gnome sort, there is
only a single position that is tracked, namely the position of the gnome. The
gnome has to walk back after it has placed the element in the proper position,
and thus performs more comparisons than insertion sort.

We can write down an algorithm that encodes the procedure of the gnome:
see Figure 1. We are given variables f and t of type integer. These represent
the range of indices in the array a representing the flower pots, where f is the
index of the first flower pot and t is the index of the last flower pot. The variable
i of type integer represents the position of the gnome, and the variable z of
type integer is a temporary variable used for swapping the flowers.

We can make the following observations of the algorithm in Figure 1:

• If t ≤ f then the algorithm terminates without modifying the array. Oth-
erwise, the bounds of the position i are: f ≤ i ≤ t+ 1.

• The array from f to i−1 is always sorted. This property is a loop invariant :
it holds at the beginning of the loop, at the beginning of the loop body,
at the end of the loop body, and after the loop.

• The sorting algorithm does not insert new elements, duplicate old ele-
ments, or throw out elements: thus, the output array (that is, the value of
a after running) is a permutation of the input array (the value of a before
running) restricted to the given range [f, t]. At the beginning and end of
the loop body, the current value of the array is also a restricted permu-
tation of the input array, and this property is a loop invariant. However,
this is temporarily broken when we swap around values in the array!

© 2025 the author(s) 4 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

Correctness of Two Sorting Algorithms

{(∀i : a[i] = b[i]) ∧ f ≤ t+ 1} (2.1)
{Sorted(a, f, f − 1) ∧ Permut(a, b, f, t) ∧ f ≤ t+ 1} (2.2)
i := f ;
{inv : Sorted(a, f, i− 1) ∧ Permut(a, b, f, t) ∧ f ≤ i ≤ t+ 1} (2.3)
while i ≤ t do

{Sorted(a, f, i− 1) ∧ Permut(a, b, f, t) ∧ f ≤ i ≤ t} (2.4)
if i = f ∨ a[i− 1] ≤ a[i]
then

{Sorted(a, f, i− 1) ∧ Permut(...) ∧ f ≤ i ≤ t ∧ (i = f ∨ a[i− 1] ≤ a[i])}
{Sorted(a, f, i) ∧ Permut(a, b, f, t) ∧ f ≤ i+ 1 ≤ t+ 1} (2.5)
i := i+ 1
{Sorted(a, f, i− 1) ∧ Permut(a, b, f, t) ∧ f ≤ i ≤ t+ 1}

else
{Sorted(a, f, i− 1) ∧ Permut(a, b, f, t) ∧ f < i ≤ t ∧ a[i− 1] > a[i]}
{Sorted(a, f, i− 2) ∧ Permut(a, b, f, t) ∧ f ≤ i− 1 ≤ t+ 1} (2.6)
z := a[i];
a[i] := a[i− 1]; (2.7)
a[i− 1] := z;
{Sorted(a, f, i− 2) ∧ Permut(a, b, f, t) ∧ f ≤ i− 1 ≤ t+ 1} (2.8)
i := i− 1
{Sorted(a, f, i− 1) ∧ Permut(a, b, f, t) ∧ f ≤ i ≤ t+ 1}

fi
{Sorted(a, f, i− 1) ∧ Permut(a, b, f, t) ∧ f ≤ i ≤ t+ 1}

od
{Sorted(a, f, i− 1) ∧ Permut(a, b, f, t) ∧ f ≤ i ≤ t+ 1 ∧ ¬(i ≤ t)}
{Sorted(a, f, t) ∧ Permut(a, b, f, t)} (2.9)

Figure 2. A proof outline of the gnome sort algorithm.

We now formalize the correctness proof, by means of a proof outline (see
Figure 2). First, we introduce a freeze variable, the array b of type integer →
integer. We may think of b as a snapshot of the array a at the time before
running the algorithm. Since b is never modified by the program, it maintains
its value over time, and thus allows us to compare the actual value of a with its
original value.

(2.1) The precondition as formulated expresses that the freeze variable b con-
tains a snapshot of array a at this instant. Also, we restrict ourselves in
this proof to the case where f ≤ t+1 holds (since, otherwise, the algorithm
has no effect).

(2.2) This assertion follows from (2.1) since the following properties hold:

(∀i : a[i] = b[i]) → Permut(a, b) and Permut(a, b) → Permut(a, b, f, t).

We take as a witness (for the existentially quantified π in the definition

© 2025 the author(s) 5 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

Correctness of Two Sorting Algorithms

of Permut) the identity function, which is a bijection. Also, the following
property holds:

t ≤ f → Sorted(a, f, t),

since the range [f, t] must be empty if t < f , and Sorted(a, f, f) also holds.

(2.3) As we already observed from the algorithm, we can now formalize the
loop invariant. The first part expresses that the array from f until (but
excluding) i must be sorted. The second part expresses that the actual
value of a is a permutation of the input array (given the name b), restricted
to the range [f, t]. The third part expresses the bounds of the position i.
Note that by applying the substitution rule we obtain assertion (2.2), so
we have verified that this loop invariant is initially valid. In the remainder
of the proof outline we check whether the loop invariant is preserved by
the loop body, and allows us to conclude our post condition.

(2.4) This assertion always holds at the start of the loop body, where we know
the loop test is true. Thus we can make the invariant stronger: we know
that i ≤ t subsumes i ≤ t+ 1.

(2.5) We have obtained this assertion in the following way: we need to establish
the loop invariant of (2.3) at the end of the loop body. Hence, it has to
be a postcondition of the then-branch of the conditional statement. We
apply the substitution axiom that replaces i by i+1. Now, why does this
assertion follow from the preceding assertion? We discriminate two cases:

• Case i = f . We can establish Sorted(a, f, f) from the general prop-
erty mentioned at (2.2).

• Case a[i− 1] ≤ a[i]. The following property holds:

Sorted(a, f, i− 1) ∧ a[i− 1] ≤ a[i] → Sorted(a, f, i)

since we extend the range but also have the required property about
a[i] and a[i+1] (and by transitivity of ≤, also for all elements before
a[i], cf. why the predicates Sorted and Sorted ′ are equivalent).

That Permut(a, b, f, t) follows from Permut(a, b, f, t) (shown with dots) is
trivial, and it is easy to see that i ≤ t → i+1 ≤ t+1 and f ≤ i → f ≤ i+1.

(2.6) The assertion above this one is obtained from (2.4) and the negation of
the conditional test. This assertion follows from the one above by the
following argument. We have the property:

j < i ∧ Sorted(a, f, i) → Sorted(a, f, j)

since the range becomes smaller. Permut(a, b, f, t) implies itself is again
trivial, and i ≤ t → i− 1 ≤ t+ 1 and f < i → f ≤ i− 1 are easy to see.

© 2025 the author(s) 6 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

Correctness of Two Sorting Algorithms

(2.7) But how did we obtain the assertion at (2.6) in the first place? Intuitively,
it is the result of swapping a[i] and a[i−1] in the assertion (2.8). Swapping
does not affect f ≤ i− 1 ≤ t+ 1. We have the following property:

t < i → Sorted(a, f, t)[a[i] := v] ≡ Sorted(a, f, t)

since a[x][a[i] := v] = a[x] for all x < i: there is no aliasing here!

The proof outline has a missing link: why is it that a and b are still
restricted permutations when we swap a[i] and a[i−1]? The essence of the
argument is that from the witness π of Permut(a, b, f, t), we can construct
a new witness, say π′, as follows: π′(i) = π(i− 1) and π′(i− 1) = π(i) and
for all other arguments π′ and π agree. Further, i and i−1 fall within the
restricted range [f, t] of the permutation.

To phrase it in a different way, we have the following property:

Permut(a, b, f, t)[a[i−1] := z][a[i] := a[i−1]][z := a[i]] ≡ Permut(a, b, f, t)

if f ≤ i− 1 ≤ t+ 1.

(2.8) Easily obtained from the loop invariant by replacing i by i− 1.

(2.9) We check that the loop invariant and the negation of the loop test actually
leads to the desired postcondition: we have that i = t+ 1 must hold.

This concludes the correctness argument of the gnome sort algorithm.

4 Bozosort

Bozosort is also a simple sorting algorithm. Suppose you stand in front of a
table with cards on its surface, and each card has a number printed on it. Now
pick any two cards on the table and swap them. Repeat this, until the numbers
on the cards are all sorted from small to large. In this algorithm, we make use
of a source of randomness: namely, to pick two cards to swap.

Again, we use an array a of type integer → integer to represent the cards
on the table. Each cell of the array corresponds to a spot on the table, and the
value stored in the array is the number printed on the card.

We can write down an algorithm that encodes this procedure, see Figure 3.
Here, we are given variables f and t of type integer representing the bounds of
the array. The algorithm consists of an outer loop and an inner loop. The loop
body of the outer loop has two components (separated by vertical space). By
component I simply mean a subprogram. The first component chooses two ran-
dom numbers and swaps the values in the array. The second component walks
through the array to test whether it is actually sorted. We use the variables i
and j of type integer, and the variable c of type boolean.

To understand the meaning of the random assignment, we can make use of
the following axiom:

{p} x := random(l, h) {p ∧ l ≤ x ≤ h}

© 2025 the author(s) 7 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

Correctness of Two Sorting Algorithms

c := false;
while ¬c do

i := random(f, t);
j := random(f, t);
z := a[i];
a[i] := a[j];
a[j] := z;

c := true;
i := f ;
while c ∧ i < t
do

if a[i] ≤ a[i+ 1]
then

i := i+ 1
else

c := false
fi

od
od

Figure 3. The bozosort algorithm.

where p is an arbitrary formula where x does not occur free, and x does not
occur in the arbitrary expressions l or h. Intuitively, this statement selects (non-
deterministically) an integer between l and h and updates the value of variable
x with the selected value.

What happens when l > h is the case and we perform the random assign-
ment? According to the above axiom, we obtain

{l > h} x := random(l, h) {l > h ∧ l ≤ x ≤ h}.
The postcondition is contradictory, so equivalent to false. Thus, operationally,
we could think that running the random assignment from such a situation is
equivalent to running a program that never finishes. This works because we
look at Hoare triples in their partial correctness sense.

We can make the following observations of the algorithm in Figure 3:

• The actual value of array a is a permutation of the input array a at
any control point, except in the middle of the first component where we
perform the swapping of two elements. Thus, we could use this fact as a
loop invariant of both the inner and the outer loop.

• After the second component finishes its execution, the variable c represents
whether the array is actually sorted or not. Hence, it is a loop invariant
of the outer loop that if c is true, then the array is sorted. This means
that the loop only exists when the array a is actually sorted!

© 2025 the author(s) 8 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

Correctness of Two Sorting Algorithms

• The inner loop that checks whether the array is sorted looks a bit like
gnome sort: the position variable i is moved to the right whenever we
have tested the array elements are in order. But, instead of walking to the
left, the inner loop has an early exit in case it encounters two elements
that are not properly ordered. By setting c to false, the outer loop must
run again.

We now formalize the correctness proof, by means of a proof outline (see
Figure 4). Again, we introduce a freeze variable, the array b of type integer →
integer, with the same purpose as before.

(4.1) This assertion follows from the precondition, since (false → p) is vacuous
for any formula p, and the precondition implies Permut(a, b, f, t) for the
same reason as given in (2.2).

(4.2) Here we have formalized our intuition of the loop invariant for the outer
loop. Note that the assignment axiom allows us to obtain (4.1).

(4.3) When entering the loop body we know that c must be false, so we can
adapt the loop invariant: only information about the array a being a
restricted permutation remains present here.

(4.4) Obtained by applying our axiom for random assignments.

(4.5) Also obtained by applying our axiom for random assignments. Note that
from this assertion it already follows that f ≤ t.

(4.6) Again we have the swapping of two elements. The argument needed here
is a slight generalization of the argument of (2.7) above, where the essence
is this property (given f ≤ i ≤ t and f ≤ j ≤ t):

Permut(a, b, f, t)[a[j] := z][a[i] := a[j]][z := a[i]] ≡ Permut(a, b, f, t).

Note that if the two random variables have the same value, the swap has
no effect.

(4.7) Comparing to (4.3), we now also know that f ≤ t. Clearly, the three
preceding assignments cannot affect f ≤ t and we already knew it holds
in (4.5). In the other case (that f > t holds), we would not even reach
this point in the program.

(4.8) We here formulate the loop invariant for the inner body. The essence is
that we know that everything on the left (and including) of i must be
sorted. This is initially valid, since Sorted(a, f, f) is true as in (2.2). We
still need to establish that this is indeed a loop invariant.

(4.9) When the loop body is entered, we know both c and i < t. The latter is
used to make our assertion stronger than the loop invariant.

(4.10) In the case the elements are properly ordered, we can again apply the
property as mentioned in the second case of (2.5).

© 2025 the author(s) 9 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

Correctness of Two Sorting Algorithms

{∀i : a[i] = b[i]}
{(false → Sorted(a, f, t)) ∧ Permut(a, b, f, t)} (4.1)
c := false;
{inv : (c → Sorted(a, f, t)) ∧ Permut(a, b, f, t)} (4.2)
while ¬c do

{Permut(a, b, f, t)} (4.3)
i := random(f, t);
{Permut(a, b, f, t) ∧ f ≤ i ≤ t} (4.4)
j := random(f, t);
{Permut(a, b, f, t) ∧ f ≤ i ≤ t ∧ f ≤ j ≤ t} (4.5)
z := a[i];
a[i] := a[j]; (4.6)
a[j] := z;
{Permut(a, b, f, t) ∧ f ≤ t} (4.7)
c := true;
{Permut(a, b, f, t) ∧ Sorted(a, f, f) ∧ f ≤ t}
i := f ;
{inv : Permut(a, b, f, t) ∧ Sorted(a, f, i) ∧ i ≤ t} (4.8)
while c ∧ i < t
do

{Permut(a, b, f, t) ∧ Sorted(a, f, i) ∧ i < t} (4.9)
if a[i] ≤ a[i+ 1]
then

{Permut(a, b, f, t) ∧ Sorted(a, f, i) ∧ i < t ∧ a[i] ≤ a[i+ 1]}
{Permut(a, b, f, t) ∧ Sorted(a, f, i+ 1) ∧ i+ 1 ≤ t} (4.10)
i := i+ 1
{Permut(a, b, f, t) ∧ Sorted(a, f, i) ∧ i ≤ t}

else
{Permut(a, b, f, t) ∧ Sorted(a, f, i) ∧ i < t}
{Permut(a, b, f, t) ∧ Sorted(a, f, i) ∧ i ≤ t} (4.11)
c := false
{Permut(a, b, f, t) ∧ Sorted(a, f, i) ∧ i ≤ t}

fi
{Permut(a, b, f, t) ∧ Sorted(a, f, i) ∧ i ≤ t}

od
{Permut(a, b, f, t) ∧ Sorted(a, f, i) ∧ i ≤ t ∧ ¬(c ∧ i < t)}
{(c → Sorted(a, f, t)) ∧ Permut(a, b, f, t)} (4.12)

od
{(c → Sorted(a, f, t)) ∧ Permut(a, b, f, t) ∧ ¬¬c}
{Sorted(a, f, t) ∧ Permut(a, b, f, t)} (4.13)

Figure 4. A proof outline for the bozosort algorithm.

© 2025 the author(s) 10 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

Correctness of Two Sorting Algorithms

(4.11) Easy to see that i < t implies i ≤ t. It is quite surprising that the assertion
at this point does not say anything about variable c.

(4.12) We now establish that the outer loop invariant follows from the inner loop
invariant, under the condition that the inner loop has terminated (so it’s
test must be false). There are two cases:

• Case ¬c: we have an early exit of the inner loop. Since c is false,
the left conjunct is vacuous. The right conjunct trivially follows from
the inner loop invariant.

• Case ¬(i < t): we know the inner loop has fully executed, so i = t
from the upper bound in the loop invariant. So Sorted(a, f, t) must
hold, regardless of the value of c.

(4.13) The postcondition is obtained by a double negation elimination on the
test of the outer loop: ¬¬c implies c, and so from (c → Sorted(a, f, t)) we
obtain that the array is actually sorted. Again, Permut(a, b, f, t) follows
trivially from the outer loop invariant.

This concludes the correctness argument of the bozosort algorithm.

5 Conclusion

We have seen two sorting algorithms, and discussed their correctness proofs.
Although almost every detail is present here, there still remains a good exercise
for practicing with array variable substitutions: to write down the proof outline
of swapping the array elements above, and working out in all detail how it affects
the restricted permutation predicate Permut .

In this article, we only look at program correctness in the sense of par-
tial correctness. An interesting question remains: what can we say about the
termination of these algorithms? Under what conditions do these algorithms
terminate? In the next following weeks of the Program Correctness course, we
will look at total correctness, where we shall prove not only the correctness of
a program with respect to a specification of its input and output behavior, but
also whether the program terminates!

Acknowledgements I thank Dominique Lawson and Roos Wensveen (both
student assistants of the Program Correctness course) for suggesting improve-
ments, and discovering an error in a previous version of this article. The error
was that the postcondition needs to be Permut(a, b, f, t) and not Permut(a, b)
(can you see why?). All remaining errors remain my own.

© 2025 the author(s) 11 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

Correctness of Two Sorting Algorithms

References

[1] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Fifty years of Hoare’s
logic. Formal Aspects of Computing, 31:751–807, 2019. doi:10.1007/

s00165-019-00501-3.

© 2025 the author(s) 12 CC-BY-4.0

https://doi.org/10.1007/s00165-019-00501-3
https://doi.org/10.1007/s00165-019-00501-3
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Sorting
	Gnome sort
	Bozosort
	Conclusion

