
© 2025 the author(s)
Licensed under Creative Commons Attribution International 4.0 (CC-BY-4.0).

dr. Heap is an independent publication, for informational and educational purposes only. Opinions
expressed here do not necessarily reflect those of any organization—including the past, current
and future employer(s) of the author(s) or any of their affiliations and/or associations.

A sound and complete proof system

for separation logic (part 1)
Hans-Dieter A. Hiep Frank S. de Boer

June 29, 2024

1 Introduction

In this article we have another look at the proof system for separation logic that
is introduced in the first author’s PhD thesis [5] (publicly defended on Thursday,
May 23rd, 2024).

By separation logic we mean the logic behind the assertion language used
in Reynolds’ logic, the program logic for reasoning about the correctness of
pointer programs that was introduced in 2002 by J.C. Reynolds [9]. In that
article, Reynolds introduces both his program logic and axiomatizes the logic
of separation logic by several axioms, but writes:

Finally, we give axiom schemata for the predicate 7→.
(Regrettably, these are far from complete.)

In 2021, completeness of quantifier-free separation logic was established [3], and
three year later completeness of the full language of separation logic [5].

The purpose of this article is to show the novel proof system of [5] in a
straightforward way. The new proof system can be used to prove all valid
formulas, which until now were impossible to prove using existing automatic
and interactive tools for separation logic. In Section 2 we quickly revisit the
formulas of separation logic, in Section 3 we introduce the proof system, and in
Section 4 we have a look at a number of example proofs. We then continue the
discussion that motivates the design of the proof system: in Section 5 we discuss
referential transparency and the binding structure of separation logic, and in
Section 6 we discuss issues such as univalence, well-foundedness, and finiteness.

This article is part one of a series of articles about the new proof system for
separation logic. In this article, we focus on the syntax of the proof system. In
Section 7, the conclusion, we discuss the topics of the next parts of this series,
namely semantics and the soundness and completeness of the proof system.

2 Preliminaries

The syntax of formulas of separation logic is defined as follows:

ϕ, ψ ::= ⊥ | (x ↪→ y) | P (x1, . . . , xn) | (ϕ→ ψ) | (∀x)ϕ | (ϕ ∗ ψ) | (ϕ −∗ ψ)
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where we assume there is a countably infinite set of variables V with typical
examples x, y, z (possibly with subscripts), and we have a signature which has
a countably infinite set of non-logical symbols each assigned to a fixed arity of
which P is a typical example with arity n. We have the usual logical symbols:
⊥ stands for falsity and (ϕ→ ψ) stands for logical implication. From these two
symbols we can derive all other propositional connectives, such as negation ¬ϕ,
verum ⊤, logical conjunction (ϕ ∧ ψ), and logical disjunction (ϕ ∨ ψ). We have
universal quantification (∀x)ϕ where the variable x is bound in the usual way,
and we can define existential quantification (∃x)ϕ as the dual ¬(∀x)¬ϕ. By
FV (ϕ) we mean the set of free variables in ϕ. Quantification is first-order in the
sense that quantification ranges over individuals. Finally, we also have equality
(x = y) as a non-logical symbol, but with a fixed meaning. (Our treatment of
parentheses and resolution of ambiguity is standard: we may leave parentheses
out as long as the result is not too ambiguous.)

What is different in separation logic compared to classical first-order logic
are the following so-called separation symbols (distinguished from the logical and
non-logical symbols). The primitive formula (x ↪→ y) is called points to (as in ‘x
points to y’) or a reference (as in ‘x is a reference to y’). As complex formulas,
two separating connectives are given: (ϕ ∗ ψ) is a separating conjunction, and
(ϕ −∗ ψ) is a separating implication. The latter connective is also called the
magic wand by some authors. Having ‘points to’ ↪→ as primitive allows us to
define ‘strict points to’ 7→ as follows, where we take (x 7→ y) to abbreviate

(x ↪→ y) ∧ (∀z, w. (z ↪→ w) → x = z).

The intention is that (x ↪→ y) expresses that location x has value y, whereas
(x 7→ y) expresses furthermore that x is the only location allocated. We also
have the abbreviations (x ↪→ −) and (x 7→ −), where we immediately exis-
tentially quantify away the value. These express that x is allocated (possibly
among other locations) and, moreover, that only x is allocated. By emp we
mean nothing is allocated, so it abbreviates ∀x(¬(x ↪→ −)), i.e. every location
x does not point to some value, or equivalently ∀x, y.¬(x ↪→ y).

3 Proof system

In this section we introduce a novel proof system for separation logic. In this
article we look at the proof system from a purely syntactical point of view. In
the next article of this series, we give the standard semantics of separation logic.

The first device we introduce is a special let construct, in the following sense:

let (x ↪→ y) := ψ(x, y) in ϕ.

This construct allows us to change the meaning of ‘point to’ in ϕ, by assigning
it the meaning denoted by ψ(x, y). Intuitively speaking, to evaluate whether
let (x ↪→ y) := ψ(x, y) in ϕ holds, we first consider the heap denoted by ψ
(with free variables x and y) and then we evaluate whether ϕ holds in the heap
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described by ψ. We must be careful not having a too näıve interpretation of let:
we cannot just simplify by replacing the occurrences of (x ↪→ y) in ϕ by ψ(x, y),
because separating connectives are referentially opaque (this is explained in
more detail in Section 5). The purpose of our proof system is to reason about
this let construct in a formal way.

Working with let takes much space, so instead we use the shorthand notation
ϕ@x,yψ. Thus, the objects of our proof system involve not just the formulas of
separation logic, but an extended language (called extended separation logic) in
which we add this special construct:

ϕ, ψ ::= . . . | (ϕ@x,yψ)

Next, we introduce a proof system with as objects the formulas of extended
separation logic. This proof system allows us to deduce formulas: a deduction
is also called a proof, and we shall give a number of example proofs. Recall that
we have a signature that has a countable infinite supply of non-logical symbols.
For any formula of extended separation logic, its parameters are the predicate
symbols of the signature that occur somewhere in the formula. In particular,
we shall make use of so-called ‘bookkeeping devices’, which are binary predicate
symbols R (possibly with quotes or subscripts) from the signature. Sometimes
we have the side-conditions that our bookkeeping devices are ‘fresh’, in the sense
that they do not appear as parameters of formulas in the context.

We present the proof system as a Hilbert-style axiom system, but nothing
prevents us from also giving the proof system in the style of natural deduction.
We have the usual proof rules and axioms of classical logic (but instantiated with
formulas of extended separation logic), together with the following axioms:

• ϕ↔ (ϕ@(x ↪→ y)) (Lookup)

• ((x′ ↪→ y′)@ψ) ↔ ψ[x, y := x′, y′] (Replace)

• (false@ϕ) ↔ false (@⊥)

• ((ϕ→ ψ)@χ) ↔ (ϕ@χ→ (ψ@χ)) (@→)

• ((∀xϕ)@ψ) ↔ (∀x)(ϕ@ψ) if x ̸∈ FV (ψ) (@∀)

• (ϕ@(ψ@χ)) ↔ ((ϕ@ψ)@χ) (Assoc)

• (∀x, y(ψ ↔ χ)) → ((ϕ@ψ) ↔ (ϕ@χ)) (Extent)

• ((ϕ ∗ ψ)@χ) → (χ = R1 ⊎R2 → (ϕ@R1) → (ψ@R2) → ξ) → ξ (∗E)

• χ = χ1 ⊎ χ2 → (ϕ@χ1) → (ψ@χ2) → ((ϕ ∗ ψ)@χ) (∗I)

• ((ϕ −∗ ψ)@χ) → (χ ⊥ χ′) → (ϕ@χ′) → ((ψ@(χ ∨ χ′)) → ξ) → ξ (−∗E)

• (χ ⊥ R→ (ϕ@R) → (ψ@(χ ∨R(x, y)))) → ((ϕ −∗ ψ)@χ) (−∗I)
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We have the side-condition in the rule (∗E) that the symbols R1 and R2 are
fresh, i.e. are not parameters of ϕ, ψ, χ, ξ. Similarly, we have the side-condition
in the rule (−∗I) that the symbol R is fresh, i.e. is not a parameter of ϕ, ψ, χ.
We used @ without subscripts instead of @x,y to reduce notational clutter. To
avoid confusion, we may use false instead of ⊥ and true instead of ⊤.

ψ[x, y := x′, y′] is the result of simultaneous substitution of x by x′ and y by
y′, respectively. The substitution operator ϕ[x := x′] is defined compositionally
as usual, and has the following specification for the new connective:

(ϕ@x,yψ)[z := z′] = (ϕ[z := z′]@x,yψ[z := z′])

where x, y, z are all distinct. If z is either the same variable as x or y, then the
substitution is not pushed down on the right side. A similar definition can be
given for simultaneous substitution of distinct variables.

We let χ = χ1 ⊎ χ2 abbreviate the formula

(χ ≡ χ1 ∪ χ2) ∧ (χ1 ⊥ χ2)

and let χ ≡ χ1 ∪ χ2 abbreviate the formula

∀x, y(χ(x, y) ↔ χ1(x, y) ∨ χ2(x, y))

and let χ1 ⊥ χ2 abbreviate the formula

∀x, y
(
χ1(x, y) → ∀z.¬χ2(x, z)

)
.

These abbreviations universally quantify x, y: we let these quantifiers, on pur-
pose, capture the free variables x and y of χ, χ1, χ2. When χ1 and χ2 are just
the binary predicate symbols R1 and R2, we mean the formulas R1(x, y) and
R2(x, y). One can also use set builder notation to make the intention more clear.
Note that in the latter abbreviation, χ1 ⊥ χ2, we require the stronger notion of
disjointness of the domains of the relation, not the weaker notion of disjointness
of the two sets of pairs representing the pairs that are related by each relations.

Further, a useful result in practical reasoning is that we can replace equi-
valent subformulas in any formula. Moreover, the deduction theorem also holds
for our proof system, hence we can apply the axioms under any context. We
furthermore shall use the above proof system in a natural deduction style.

4 Example proofs

Let us now have a look at a number of example proofs. We shall write ⊢ ϕ
to mean that ϕ is demonstrable in the proof system given above without any
premises, and Γ ⊢ ϕ to mean that ϕ is demonstrable using the premises in Γ.

The first example is given in Figure 1. The statement we want to prove
has the following intuitive meaning: in the heap described by ⊥ we have that
emp is satisfied. The argument is the following: the heap described by ⊥ is
the empty graph (no location is mapped to any value), so evaluating emp in
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Proposition. ⊢ emp@⊥.

Proof. Recall emp abbreviates ∀x, y.¬(x ↪→ y), and ¬ϕ abbreviates ϕ→ ⊥.
1. ∀x, y. (⊥ → ⊥) is trivial from first-order reasoning.
2. ∀x, y. (⊥ → (⊥@⊥)) by rewriting using (@⊥) in 1.
3. ∀x, y. ((x ↪→ y)@⊥ → (⊥@⊥)) by rewriting using (Replace) in 2.
4. ∀x, y. ((x ↪→ y) → ⊥)@⊥ by rewriting using (@→) in 3.
5. (∀x, y.¬(x ↪→ y))@⊥ by applying (@∀) twice in 4. Qed.

Figure 1. Proof of emp in the empty heap.

Proposition. ⊢ ϕ ∗ ψ → ψ ∗ ϕ.

Proof.

1. (ϕ ∗ ψ)@(x ↪→ y) is assumed.

2. {(x, y) | (x ↪→ y)} = R1 ⊎R2 is assumed. (R1, R2 fresh)
3. ϕ@R1 is assumed.
4. ψ@R2 is assumed.
5. {(x, y) | (x ↪→ y)} = R2 ⊎R1 by using first-order reasoning from 2.
6. (ψ ∗ ϕ)@(x ↪→ y) by using (∗I) on 5,4,3.

7. (ψ ∗ ϕ)@(x ↪→ y) by using (∗E) on 1,(2–6).

8. (ϕ ∗ ψ)@(x ↪→ y) → ((ψ ∗ ϕ)@(x ↪→ y)) by deduction theorem on (1–7).
9. (ϕ ∗ ψ → ψ ∗ ϕ)@(x ↪→ y) by using (@→) in 8.
10. ϕ ∗ ψ → ψ ∗ ϕ by using (Lookup) in 9. Qed.

Figure 2. Proof of commutativity of ∗.

that heap indeed yields a true formula. In the proof that follows, we do not
explicitly write down how to do classical reasoning, and instead we focus on the
application of the new axioms.

The second example is given in Figure 2. We prove that for any (extended)
separation logic formulas ϕ and ψ, their separating conjunction is commutative.
The proof proceeds in two parts. In step 9, we have shown how to swap the
two separated formulas relative to the heap (x ↪→ y). But this heap description
has the same extension as the ‘outer’ heap, hence we obtain the non-relative
result in step 10! As such, we can obtain the result simply by putting the given
formula under this @-connective. We add formulas to the context by means of
opening a box, so at step 6 we have established:

(ϕ ∗ ψ)@(x ↪→ y), (x ↪→ y) = R1 ⊎R2, ϕ@R1, ψ@R2 ⊢ (ψ ∗ ϕ)@(x ↪→ y).

See Figure 3 and Figure 4 for the third and fourth examples. Figure 3 is a
generalization of the result in Figure 1. Note that in step 5 of Figure 4 we use

© 2025 the author(s) 5 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/


A sound and complete proof system for separation logic (part 1)

Proposition. ⊢ (emp@ϕ) ↔ (∀x, y.¬ϕ(x, y)).

Proof. Recall emp abbreviates ∀x, y.¬(x ↪→ y), and ¬ϕ abbreviates ϕ→ ⊥.

1. emp@ϕ is assumed.

2. ϕ(x0, y0) is assumed. (x0, y0 fresh)
3. ∀x, y. (¬(x ↪→ y))@ϕ by (@∀) in 1.
4. (¬(x0 ↪→ y0))@ϕ from 3.
5. (x0 ↪→ y0))@ϕ by (Replace) from 2.
6. ⊥@ϕ by (@→) by modus ponens from 4 and 5.
7. ⊥ by (@⊥) from 6.

8. ∀x, y. ϕ(x, y) → ⊥ from (2–7).

9. ∀x, y. ϕ(x, y) → ⊥ is assumed.

10. (x0 ↪→ y0)@ϕ is assumed. (x0, y0 fresh)
11. ϕ(x0, y0) by (Replace) from 10.
12. ⊥ by instantiation and modus ponens from 9 and 11.

13. ∀x, y. ((x ↪→ y)@ϕ→ ⊥) from (10–12)
14. emp@ϕ by (@∀) and (@→) and (@⊥) in 13.

15. (emp@ϕ) ↔ (∀x, y.¬ϕ(x, y)) from (1–8) and (9–14). Qed.

Figure 3. Proof that emp holds and only holds in empty heaps.

the result proven in Figure 3. What should be obvious now is that the proofs
are not very difficult: we use our set theoretic intuition for dealing with heaps.
Both Figure 2 and Figure 4 show that (∗E) simply adds fresh parameters R1, R2

and the corresponding assumptions to the context. This shows that separating
connectives behave almost like a quantifier, if we compare it with the way first-
order quantification works (as in Figure 3).

The reader can now try and write down the proofs for the following formulas:

• ⊢ (ϕ ∨ ψ) ∗ χ↔ ϕ ∗ χ ∨ ψ ∗ χ,
• ⊢ (ϕ ∧ ψ) ∗ χ→ ϕ ∗ χ ∧ ψ ∗ χ,
• ⊢ (∃xϕ(x)) ∗ ψ ↔ ∃x(ϕ(x) ∗ ψ),
• ⊢ (∀xϕ(x)) ∗ ψ → ∀x(ϕ(x) ∗ ψ),
• ⊢ ϕ ∗ (ϕ −∗ ψ) → ψ.

At last, we have the following non-trivial properties:

• ⊢ (x ↪→ y) ↔ (x 7→ y) ∗ ⊤,

• ⊢ ¬(x ↪→ −) → (((x 7→ y) −∗ (x 7→ y) ∗ ϕ) ↔ ϕ),

• ⊢ ((∃x(x ↪→ y)) ∗ (∃x(x ↪→ y))) ↔ (∃x((x ↪→ y) ∧ ∃z(z ̸= x ∧ (z ↪→ y)))).
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Proposition. ⊢ ϕ ∗ emp ↔ ϕ.

Proof. Recall that χ = χ1 ⊎ χ2 abbreviates (χ ≡ χ1 ∪ χ2) ∧ (χ1 ⊥ χ2).

1. (ϕ ∗ emp)@(x ↪→ y) is assumed.

2. {(x, y) | (x ↪→ y)} = R1 ⊎R2 is assumed. (R1, R2 fresh)
3. ϕ@R1 is assumed.
4. emp@R2 is assumed.
5. ∀x, y.¬R2(x, y) from applying previous proposition to 4.
6. ∀x, y.R1(x, y) ↔ (x ↪→ y) from 2 and 5.
7. ϕ@(x ↪→ y) by (Extent) from 3 and 6.

8. ϕ@(x ↪→ y) by (∗E) from 1,(2–7).

9. ϕ@(x ↪→ y) is assumed.
10. emp@⊥ by previous proposition.
11. {(x, y) | (x ↪→ y)} = {(x, y) | (x ↪→ y)} ⊎ ⊥ is a first-order tautology.
12. (ϕ ∗ emp)@(x ↪→ y) by (∗I) from 11,9,10.

13. (ϕ ∗ emp)@(x ↪→ y) ↔ (ϕ@(x ↪→ y)) from (1–8),(9–12).
14. (ϕ ∗ emp) ↔ ϕ by (@⊥) and (@→) from 13. Qed.

Figure 4. Proof that emp is a unit of separating conjunction.

The last property is very important. It shows that separation logic can be used
to express cardinality properties of the universe. The last property shows the
separation logic equivalent of the classical expression of the property ‘there are
at least two elements’. When we scale this property, to ‘there are at least n
elements’, one will see that the separation logic formula grows linearly but the
classical logic equivalent grows drastically faster: quadratically! This is the
essence of the scalability argument motivating the use of separation logic.

Our proof system is able to prove this equivalence. However, existing proof
systems for separation logic still lack the ability to prove this elementary fact.
We have investigated whether the equivalence of these formulas can be proven
in an interactive tool for reasoning about separation logic: the Iris project [6].
In current versions of that system, it is not possible to show the equivalence of
these assertions, at least not without adding additional axioms.

The last example is a demonstration of the following equivalence:

(x ↪→ −) ∧ ((x = y ∧ z = w) ∨ (x ̸= y ∧ (y ↪→ z)))
↔

(x 7→ −) ∗ ((x 7→ w) −∗ (y ↪→ z)).

This equivalence is expressed in quantifier-free separation logic, for which a
complete axiomatization was already known [3]. We can also give a proof, see
Figure 5. Surprisingly, this already exceeds the capability of all the automated
separation logic provers in the benchmark competition SL-COMP. In fact, only
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the CVC4-SL tool [8] supports the fragment of separation logic that includes the
separating implication. However, from our own experiments with that tool, we
have that it produces an incorrect counter-example and reported this as a bug
to one of the maintainers of the project. In fact, the latest version, CVC5-SL,
reports the same input as ‘unknown’, indicating that the tool is incomplete.

So far, we have seen several valid formulas of separation logic, which in the
novel proof system for separation logic we are actually able to prove. This
alone already shows our proof system goes beyond the ability of existing tools
for reasoning about separation logic! The novelty of this proof system lies in
the fact of adding a let binding construct, which in shorthand is written using
the @-connective, that relativates the heap with respect to which a formula is
interpreted.

5 Referential transparency

In this section we discuss the binding structure of separation logic, and how
the concept of referential transparency applies. Referential transparancy is a
general concept in formal languages and as such applies to both logical and
programming languages. Although Whitehead and Russell already speak of it,
Quine is often credited for introducing the term in his book Word and Object [7]
originally published in 1960. In the case of separation logic, we shall see that
the separating connectives fail referential transparency!

Separating connectives capture references, the ‘points to’, that occur in sub-
formulas. In the binding structure of first-order logic, one could resolve un-
intentional capturing by means of a so-called ‘capture avoiding’ substitution
operator that renames quantified variables before actually performing a substi-
tution. However in separation logic, one cannot define such a capture avoiding
substitution operator since in separation logic there is only a single heap in
scope that can not be renamed.

First, we shall make some general remarks about the binding structure of
separation logic formulas. A formula is pure if no separation symbol ↪→, ∗,−∗,@
occurs in it. In that case the meaning of a formula does not depend on the
heap, viz. the interpretation of ↪→. Otherwise, a formula is semi-pure if only
the separation symbol ↪→ occurs in it. A formula in which one of the separating
connectives occur is called a separating formula. We have the usual notions of
free variable occurrence and bound variable occurrence, as our notion of variable
binding is the same as in first-order logic. But, in separation logic, we also have
another binding structure, namely that of references: the meaning of ‘points to’
is different under the separating connectives.

To see why separation logic fails referential transparency, consider the ref-
erence to ‘the value of location y’ in the proposition ‘the value of location y
has property P ’. To avoid that ‘the value of location y’ is ill-defined, when
speaking of the value one implicitly intends there exists a unique value. More-
over, linguistically speaking, a reference is free if we can replace it by any other
expression that is equal to it, without affecting the truth value of the proposi-
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Proposition. ⊢ ((x ↪→ −) ∧ (x = y ∧ z = w) ∨ (x ̸= y ∧ (y ↪→ z))) ↔
((x 7→ −) ∗ ((x 7→ w) −∗ (y ↪→ z))).

Proof.

1. (x ↪→ −) is assumed.
2. (x = y ∧ z = w) ∨ (x ̸= y ∧ (y ↪→ z)) is assumed.

3. {(x0, y0) | x0 ̸= x ∧ (x0 ↪→ y0)} ⊥ R is assumed. (R fresh)
4. (x 7→ w)@R is assumed.

5. (x = y ∧ z = w) is assumed.
6. R(y, z) from 4 and 5.
7. (y ̸= x ∧ (y ↪→ z)) ∨R(y, z).

8. (x ̸= y ∧ (y ↪→ z)) is assumed.
9. (y ̸= x ∧ (y ↪→ z)) ∨R(y, z).

10. (y ̸= x ∧ (y ↪→ z)) ∨R(y, z) from 2,(5–7),(8–9).
11. (y ↪→ z)@x0,y0

((x0 ̸= x ∧ (x0 ↪→ y0)) ∨R(x0, y0)) from 10.

12. ((x 7→ w) −∗ (y ↪→ z))@x0,y0
(x0 ̸= x ∧ (x0 ↪→ y0)) by (−∗I) fr. (3–11).

13. (x 7→ −)@x0,y0
(x0 = x ∧ (x0 ↪→ y0)) from 1.

14. ↪→ = {(x0, y0) | x0 = x ∧ (x0 ↪→ y0)} ⊎ {(x0, y0) | x0 ̸= x ∧ (x0 ↪→ y0)}
15. ((x 7→ −) ∗ ((x 7→ w) −∗ (y ↪→ z)))@(x ↪→ y) by (∗I) from 14,13,12.
16. (x 7→ −) ∗ ((x 7→ w) −∗ (y ↪→ z)) by (Lookup) from 14.

17. (x 7→ −) ∗ ((x 7→ w) −∗ (y ↪→ z)) is assumed.
18. ((x 7→ −) ∗ ((x 7→ w) −∗ (y ↪→ z)))@(x ↪→ y) by (Lookup) from 17.

19. {(x, y) | (x ↪→ y)} = R1 ⊎R2 is assumed. (R1, R2 fresh)
20. (x 7→ −)@R1 is assumed.
21. ((x 7→ w) −∗ (y ↪→ z))@R2 is assumed.
22. {(x,w)} ⊥ R2 from 19 and 20.
23. (x 7→ w)@x0,y0

(x0 = x ∧ y0 = w).

24. (y ↪→ z)@x0,y0(R2(x0, y0) ∨ (x0 = x ∧ y0 = w)) is assumed.
25. R2(y, z) ∨ (y = x ∧ z = w) by (Replace) from 24.
26. R2(y, z) → y ̸= x ∧ (y ↪→ z) from 19 and 20.
27. ((x = y ∧ z = w) ∨ (x ̸= y ∧ (y ↪→ z))) from 25 and 26.

28. ((x = y ∧ z = w) ∨ (x ̸= y ∧ (y ↪→ z))) by (−∗E) fr. 21,22,23,(24–27).
29. (x ↪→ −) from 19 and 20.
30. (x ↪→ −) ∧ ((x = y ∧ z = w) ∨ (x ̸= y ∧ (y ↪→ z))) from 28,29.

31. (x ↪→ −)∧((x = y∧z = w)∨(x ̸= y∧(y ↪→ z))) by (∗E) fr. 18,(19–30).
Qed.

Figure 5. Proof of an equivalence between a semi-pure and separating formula.
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tion after replacement compared to the proposition before replacement. Often
this is called the principle of substitutivity1. For example, given that ‘the value
of location y’ equals ‘the value of location z’, when we replace a reference of
the former by the latter in the expression ‘the value of location y has property
P ’ to obtain ‘the value of location z has property P ’, we obtain an equivalent
proposition: so we have that the reference ‘the value of location y’ occurs free.
A context is said to be referentially transparent whenever it preserves the free
references: every free reference remains a free reference under the given context.
Otherwise, the context is referentially opaque.

In classical logic all propositional connectives are referentially transparent.
The only referentially opaque connectives are the quantifiers under specific cir-
cumstances. This is easy to see for a given formula P (x) with a free variable x.
Suppose x = 5, then by substitutivity we know that P (5) is equivalent to P (x).
However, some quantifiers fail referential transparency, since for example in the
formula ∃x(P (x)) we can no longer näıvely replace x with 5 when we know
x = 5. If the quantified variable is not the same as one of the free variables (ei-
ther in the subformula or in the expression being substituted), we do maintain
referential transparency. To ensure referential transparency there is the con-
vention of keeping bound and free variables separate, analogous to the so-called
Barendregt variable convention [4, Sect. 5.2].

In separation logic, however, many contexts involving separating connectives
are referentially opaque. For example, in the context of a separating conjunction
it is not always the case that we can freely replace references by equivalent
expressions. An example is where the value of location y is equal to the value
of location z, and where we also separate the locations y and z. Formally, we
have the equality on the left, and the separation on the right:

(∀x1. (y ↪→ x1) → ∀x2. (z ↪→ x2) → x1 = x2) ∧ ((∃x. (y ↪→ x)) ∗ (∃x. (z ↪→ x))).

Although we know that locations y and z have the same value, we cannot literally
replace y for z in the left component of the separating conjunction, without also
doing the reverse replacement (replacing z for y) in the other component of the
separating connective. Thus we no longer have that the reference ‘the value of
location y’ is free when it is nested under a separating conjunction: separating
conjunction is referentially opaque!

To understand the binding structure of separation logic, we introduce the
notions of direct and indirect binding. A reference (a ‘points to’ construct) or
a separating connective is directly bound to the separating connective under
which it is nested, without any other separating connective in between. Thus,
here by nesting we only have to look at separating connectives in the immediate
context, not at the logical connectives. A reference or a separating connective
is said to be free whenever it is not directly bound. A reference or a separating
connective is indirectly bound to all the separating connectives under which it is

1What is called a ‘free reference’ here comes from Quine’s ‘purely referential position’. But,
we already use the word ‘pure’ in a different sense, namely that any formula that involves the
‘points to’ construct itself is not pure. Hence we use instead the term ‘free reference’.
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∀y

→

∀z

¬

(z ↪→ y)

−∗

∗

(x ↪→ y) (y ↪→ x)

∀w

↔

(w ↪→ y) w = x

Figure 6. A parse tree showing the binding structure of separation logic. Direct
bindings are shown with dotted lines pointing to a separating connective. Free
references and free separating connectives are shown in red.

nested, but not immediately nested. In a sense, indirect binding is the transitive
but irreflexive closure of direct binding.

Another example is the following formula involving magic wand:

∀y.(∀z(z ↪̸→ y)) → ((x ↪→ y) ∗ (y ↪→ x) −∗ (∀w.(w ↪→ y) ↔ w = x))

which expresses the following concept: for every value y that the heap does not
refer to, if we were to extend the heap with a cycle between the locations x and
y, then in the resulting heap the location x is the only location which has value
y. So how does the binding structure of this formula look like? Syntactically,
there are four references (‘points to’ constructs) in this formula and two separat-
ing connectives. Each of these entities are either bound or free. The left-most
reference is free, and the other three references are bound. These three refer-
ences are nested under the magic wand, so directly or indirectly bound to that
magic wand. The magic wand itself is free. The right-most reference is directly
bound to the magic wand. The other two references are directly bound to the
separating conjunction. See Figure 6 for a graphical depiction of the parse tree
and the binding structure of references and separating connectives to separating
connectives.

There is a difference with the variable binding structure of first-order logic: if
a variable is bound to a quantifier, then it no longer necessarily has a relationship
with the free variables of the same name. Quantifiers thus introduce a so-
called scope for each variable. This is different for separation logic: although
a reference can be directly bound to a separating connective, there still can
be a necessary relationship with references that occur outside the connective to
which it is bound. For example, in Figure 6 we have that both the free reference
and the magic wand speak about the same heap (the ‘outer’ heap), but also the
right-most reference under the magic wands speaks about (part of) that outer
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heap: namely, for every z ̸= x we also have ¬(z ↪→ y) due to the equivalence on
the right-side of the magic wand.

The moral is that separation logic has ‘leaky scopes’. But it is also possible
to define constructions in separation logic that have proper scopes. For example,
the formula ■ϕ has the intuitive meaning that ϕ holds for all heaps (its formal
definition is given in the next section). It thus acts as a universal quantifier for
heaps. And we can also define ♦ϕ as the dual ¬■¬ϕ, that acts as an existential
quantifier for heaps. Just like quantifiers in first-order logic, we have that ■ϕ
and ♦ϕ introduce a proper scope of the ‘points to’ construct inside ϕ, which is
different from the ‘points to’ construct outside.

The formula■ϕ is a so-called heap independent formula. A heap independent
formula is a formula for which its truth value does not depend on the ‘current’
heap in which it is evaluated. For example, the pure fragment of separation
logic, comprising no separation symbols, is heap independent. But also ■ϕ is
heap independent, even when it contains ‘points to’ constructs and separating
connectives in ϕ. All references and connectives under ■ are bound and the
scope is closed: no ‘leaky scope’ for the black box.

6 Univalence, well-foundedness and finiteness

We now introduce the modality ■ϕ as the abbreviation

true ∗ (emp ∧ (true −∗ ϕ)).

We also have the dual ♦ϕ defined as ¬■¬ϕ. We have that both modalities have
the same binding strength as classical negation. The intuitive reading of the
modal operators is that ■ϕ holds in a given ‘current’ heap whenever ϕ holds
for all heaps (including the current heap), and ♦ϕ holds in a given current heap
whenever ϕ holds in some heap (which may be different from the current heap).
As such, these modal operators change the heap with respect to which a formula
is evaluated.

In fact, we have the following valid formulas involving these modalities:

• ⊢ ■(ϕ→ ψ) → ■ϕ→ ■ψ,

• ⊢ ■ϕ→ ϕ,

• ⊢ ■ϕ→ (ϕ@ψ),

• ⊢ ■(ϕ→ ϕ′) → ■(ψ → ψ′) → (ϕ ∗ ψ) → (ϕ′ ∗ ψ′),

• ⊢ ■(ϕ′ → ϕ) → ■(ψ → ψ′) → (ϕ −∗ ψ) → (ϕ′ −∗ ψ′).

These formulas can all be proven in our novel proof system (their proofs are
great exercises for the reader). We also have that the rule of necessitation is
admissible, in the sense that ⊢ ϕ implies ⊢ ■ϕ, but whether this rule is also
effectively derivable is not known to us.
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We now consider an example of using the black box modality ■. In our treat-
ment of separation logic, we do not necessarily impose so-called ‘functionality’
or ‘univalence’ of the heap. This means that it is possible that

(x ↪→ y) ∧ (x ↪→ z) ∧ y ̸= z

is true in some situation. We thus treat ↪→ as a relation symbol. One intuitive
way to interpret the ‘points to’ relation would be from object-oriented program-
ming, where the object x has some reference to the object y by one of its fields,
but we abstract away through which field object x references object y. It is not
difficult to obtain univalence by restricting ourselves to those situations where
there is at most one value, by means of the property:

∀x, y, z. (x ↪→ y) ∧ (x ↪→ z) → y = z.

That all heaps are univalent can be simply expressed by:

■(∀x, y, z. (x ↪→ y) ∧ (x ↪→ z) → y = z).

We also have the following modality □ϕ, introduced as the abbreviation

¬(⊤ ∗ ¬ϕ).

Also the dual ♢ϕ is defined as ¬□¬ϕ. The intuitive reading of these modal
operators is different, in the sense that □ϕ holds in a given heap whenever ϕ
holds for all subheaps of the given heap. Similarly, ♢ϕ holds in a given heap
whenever ϕ holds for some subheap of the given heap.

An example of the □ modality is the following. We say that a value x is
reachable if there is a location y which refers to it, so ∃y.(y ↪→ x). Conversely,
a location y is allocated whenever it refers to a value, so ∃x.(y ↪→ x). Consider
that allocated locations can also be used as values, so we can have an allocated
and reachable location. This way, we can form chains of so-called traversals:

x0 ↪→ x1 ↪→ x2 ↪→ . . . ↪→ xn

which abbreviates the conjunction of xi ↪→ xi+1 for 0 ≤ i < n. Whenever xn
is not allocated, the traversal has reached a dead-end. However, whenever in
a traversal the first and last location are the same, we have a cycle: it is then
possible to keep on traversing the heap indefinitely.

We say that a heap is well-founded whenever for every non-empty subheap
there is some allocated but unreachable location. This is expressed formally as:

□(¬emp → ∃x.(x ↪→ −) ∧ ∀y.(y ↪̸→ x)).

The claim is now that there are no cycles in a well-founded heap. To see why,
suppose towards contradiction we have a well-founded heap (in which the above
formula is true) in which there exists a cycle

x0 ↪→ x1 ↪→ x2 ↪→ . . . ↪→ xn ↪→ x0.
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Then take the subheap which consists precisely of the locations {x0, . . . , xn},
that is, we ignore all the locations not visited as part of the cycle. This subheap
is non-empty. But we can not take any xi as witness, since every location is
reachable! This is a contradiction.

When speaking of modal operators, it is useful to speak of the ‘current’
heap (with respect to which any formula in separation logic is evaluated), the
‘outer’ heap (which is the heap with respect to which an enclosing formula is
evaluated) and the ‘inner’ heap (which is the current heap while evaluating a
subformula). This terminology is also useful when speaking about the separating
connective (ϕ ∗ ψ), where we would speak of the ‘outer’ heap with respect to
which the entire formula is evaluated, and two ‘inner’ heaps corresponding to
the evaluation of ϕ and ψ.

The point of the discussion above is that we can now understand more clearly
what happens with the @-connective. Suppose now that ψ is pure, so it does
not have any (free) references. Then we have that (ϕ@ψ) and the formula

■((∀x, y. (x ↪→ y) ↔ ψ(x, y)) → ϕ)

are equivalent. (We discuss this and related formulas in more detail below.)
Clearly, this is a heap independent formula, due to the black box! However,
when ψ is not pure, the formula (ϕ@ψ) is not heap independent. In the @-
connective, the crux is that the ‘points to’ symbol in ψ is relevant and its
meaning depends on the ‘outer’ heap, whereas the ‘points to’ symbol in ϕ is
intentionally captured by the @-connective where its denotation is described by
ψ. The @-connective thus changes what is the ‘current’ heap when evaluating
ϕ. This is similar to what the modal operator □ϕ does, in which also we have an
‘inner’ and ‘outer’ heap, but where the former is a subheap of the latter heap.
In the @-connective the ‘inner’ heap is described by ψ, which may depend on
the ‘outer’ heap when it is not a heap independent formula.

Existence of the empty heap, where nothing is allocated, is expressed by:

♦(∀x, y. (x ↪̸→ y)).

But what about the opposite, the existence of a heap in which every location is
allocated? Could the formula

♦(∀x∃y. (x ↪→ y))

be true? Or what about the existence of a heap in which every value is reachable?
Could the formula

♦(∀y∃x. (x ↪→ y))

be true? No, in the standard interpretation of separation logic, based on the
integers, these formulas are false because heaps are finitely-based partial func-
tions!

Suppose we work with the standard integers Z, and we have in our signature
the usual arithmetical symbols. If we want to ensure we only deal with finite,
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univalent heaps, then we should take the following formulas as axioms:

■(∀x, y, z. (x ↪→ y) ∧ (x ↪→ z) → y = z)
■(∃x0, x1.∀x, y. (x ↪→ y) → x0 ≤ x ≤ x1)

The first axiom expresses univalence. The second axiom expresses bounded-
ness, that is, for every heap there is a bound on the domain, that is, there is
a maximum and minimum location. Every finitely-based partial function satis-
fies these property (a finitely-based partial function can be seen as a finite list
of location-value associations, and the maximum and minimum can be com-
puted). Conversely, every heap that satisfies both axioms can be represented by
a finitely-based partial function: there are only finitely many locations between
the minimum and maximum location (due to boundedness) that can be assigned
at most one value (due to univalence).

Note that in the standard interpretation of separation logic on the integers,
we never treat the heap as a total map, where every location must have a value.
It thus always remains a possibility for a location to be unallocated, i.e. the
location x is unallocated in a situation whenever

∀z(x ↪̸→ z)

holds—which expresses that there is no value to which x points. In non-standard
interpretations of separation logic, we do have the possibility of an infinite heap.

7 Conclusion

The proof system we introduce makes use of a new @-connective which allows to
interpret the points-to relation in terms of a logical description. It bears some
relation with hybrid logic [1] which features so-called nominals and satisfaction
operators. Temporally, the nominals describe when is ‘now’, and the satisfaction
operator allows to evaluate a formula with respect to a given nominal, thereby
changing when is ‘now’. As such, hybrid logic allows to express more than
modal logic: an example is “At 6 o’clock, the church bells ring six times.” This
sentence is more time-specific than the usual modal operators for expressing
‘always’ or ‘sometimes’. Comparing with the @-connective, we see that @ is
even more general notion than what a satisfaction operator provides, since we
introduce it as a connective between formulas. This means that formulas can
now also take the place of the nominals in hybrid logic, and this allow us to
describe a situation, that is, the ‘current’ heap, by means of a formula.

An important result is that our new proof system allows us to show many
more equivalences than existing proof systems for separation logic. Thus we
go beyond the capability of many existing tools for (automatic or interactive)
reasoning about separation logic! It is quite surprising that none of the existing
tools can verify some of our particular equivalences. We think this is due to
the abstract description of the separating connectives in terms of cancellative
partially commutative monoids (cf. separation algebras [2]). How to combine
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this abstract description with a set-theoretical interpretation of the points-to
relation is problematic. This seems to suggest we should start developing new
kinds of tools for automatic or interactive reasoning about separation logic, or
adjust the existing tools to be able to work around current limitations.

The presented proof system is sound and complete. This will be elaborated
upon in following blog posts. In part two we study standard and non-standard
interpretations of separation logic, and give the main argument of relative com-
pleteness of the novel proof system. Relative completeness is a completeness
argument relative to an oracle. This approach is necessary since absolute com-
pleteness for standard separation logic is not possible due to failure of com-
pactness. Other topics that we will discuss in this series of articles concern the
impact on Reynolds’ program logic [9], expressivity of separation logic and sep-
aration logic as an intermediate logic between first-order logic and second-order
logic, and intuitionistic separation logic.
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